Learn More
Gripping and holding of objects are key tasks for robotic manipu-lators. The development of universal grippers able to pick up unfamiliar objects of widely varying shape and surface properties remains, however, challenging. Most current designs are based on the multifingered hand, but this approach introduces hardware and software complexities. These(More)
—We describe a simple passive universal gripper, consisting of a mass of granular material encased in an elastic membrane. Using a combination of positive and negative pressure, the gripper can rapidly grip and release a wide range of objects that are typically challenging for universal grippers, such as flat objects , soft objects, or objects with complex(More)
— Grasping has been studied from various perspectives including planning, control, and learning. In this paper, we take a learning approach to predict successful grasps for a universal jamming gripper. A jamming gripper is comprised of a flexible membrane filled with granular material, and it can quickly harden or soften to grip objects of varying shape by(More)
We present measurements of the stress response of packings formed from a wide range of particle shapes. Besides spheres these include convex shapes such as the Platonic solids, truncated tetrahedra, and triangular bipyramids, as well as more complex, non-convex geometries such as hexapods with various arm lengths, dolos, and tetrahedral frames. All(More)
  • 1