John Platig

Learn More
Large systems of coupled oscillators subjected to a periodic external drive occur in many situations in physics and biology. Here the simple paradigmatic case of equal strength, all-to-all sine coupling of phase oscillators subject to a sinusoidal external drive, is considered. The stationary states and their stability are determined. Using the stability(More)
In various applications involving complex networks, network measures are employed to assess the relative importance of network nodes. However, the robustness of such measures in the presence of link inaccuracies has not been well characterized. Here we present two simple stochastic models of false and missing links and study the effect of link errors on(More)
As exemplified by the Kuramoto model, large systems of coupled oscillators may undergo a transition to phase coherence with increasing coupling strength. It is shown that below the critical coupling strength for this transition such systems may be expected to exhibit "echo" phenomena: a stimulation by two successive pulses separated by a time interval tau(More)
Genome Wide Association Studies (GWAS) and expression quantitative trait locus (eQTL) analyses have identified genetic associations with a wide range of human phenotypes. However, many of these variants have weak effects and understanding their combined effect remains a challenge. One hypothesis is that multiple SNPs interact in complex networks to(More)
The sequential changes occurring with cancer progression are now being harnessed with therapeutic intent. Yet, there is no understanding of the chemical thermodynamics of proteomic changes associated with cancer progression/ cancer stage. This manuscript reveals a strong correlation of a chemical thermodynamic measure (known as Gibbs free energy) of(More)
In this thesis we present methods for applying techniques from complex network theory to analyze and interpret inferred biological interactions. With the advent of high throughput technologies such as gene microarrays and genome-wide sequencing, it is now possible to measure the activity of every gene in a cancer cell population under different conditions.(More)
  • 1