Learn More
We combined an ensemble of satellite altimetry, interferometry, and gravimetry data sets using common geographical regions, time intervals, and models of surface mass balance and glacial isostatic adjustment to estimate the mass balance of Earth's polar ice sheets. We find that there is good agreement between different satellite methods--especially in(More)
— Ice sheet models are necessary to understand ice sheet dynamics and to predict their behavior. Of the primary inputs to these models, basal conditions are the least understood. By observing the forward and backscatter across a wide frequency range (over two octaves) the basal conditions can be established with a high level of confidence. For this purpose,(More)
Ground-penetrating radar systems are useful for a variety scientific studies, including monitoring changes to the polar ice sheets that may give clues to climate change. A key step in analyzing radar echograms is to identify boundaries between layers of material (such as air, ice, rock, etc.). In this paper, we propose an automated technique for identifying(More)
Sea ice is generally covered with snow, which can vary in thickness from a few centimeters to >1 m. Snow cover acts as a thermal insulator modulating the heat exchange between the ocean and the atmosphere, and it impacts sea-ice growth rates and overall thickness, a key indicator of climate change in polar regions. Snow depth is required to estimate sea-ice(More)