John P Headrick

Learn More
OBJECTIVE This study tested the hypothesis that brief cycles of iterative ischemia-reperfusion at onset of reperfusion (termed "postconditioning", post-con) delays washout of intravascular adenosine and thereby increases endogenous adenosine receptor (AR) activation during the early moments of reperfusion (R). METHODS Isolated mouse hearts were subjected(More)
Despite minimal model characterisation Langendorff perfused murine hearts are increasingly employed in cardiovascular research, and particularly in studies of myocardial ischaemia and reperfusion. Reported contractility remains poor and ischaemic recoveries variable. We characterised function in C57/BL6 mouse hearts using a ventricular balloon or apicobasal(More)
Cells of the cardiovascular system generate and release purine nucleoside adenosine in increasing quantities when constituent cells are "stressed" or subjected to injurious stimuli. This increased adenosine can interact with surface receptors in myocardial, vascular, fibroblast, and inflammatory cells to modulate cellular function and phenotype.(More)
Coronary heart disease (CHD) remains the greatest killer in the Western world, and although the death rate from CHD has been falling, the current increased prevalence of major risk factors including obesity and diabetes, suggests it is likely that CHD incidence will increase over the next 20 years. In conjunction with preventive strategies, major advances(More)
Vascular endothelial growth factor-B (VEGF-B) is closely related to VEGF-A, an effector of blood vessel growth during development and disease and a strong candidate for angiogenic therapies. To further study the in vivo function of VEGF-B, we have generated Vegfb knockout mice (Vegfb(-/-)). Unlike Vegfa knockout mice, which die during embryogenesis,(More)
Intra- and extracellular adenosine levels rise in response to physiological stimuli and with metabolic/energetic perturbations, inflammatory challenge and tissue injury. Extracellular adenosine engages members of the G-protein coupled adenosine receptor (AR) family to mediate generally beneficial acute and adaptive responses within all constituent cells of(More)
The role of A(1) adenosine receptors (A(1)AR) in ischemic preconditioning was investigated in isolated crystalloid-perfused wild-type and transgenic mouse hearts with increased A(1)AR. The effect of preconditioning on postischemic myocardial function, lactate dehydrogenase (LDH) release, and infarct size was examined. Functional recovery was greater in(More)
Aging is associated with reduced tolerance to ischemic insult, and genesis of this intolerant phenotype is poorly understood. We characterized effects of aging and gender on cardiovascular function and cell damage during 20 min ischemia and 60 min reperfusion in isolated hearts from young adult (2-4 months), mature adult (8 months), middle-aged (12 months),(More)
Activation of myocardial A1 adenosine receptors (A1AR) protects the heart from ischemic injury. In this study transgenic mice were created using the cardiac-specific alpha-myosin heavy chain promoter and rat A1AR cDNA. Heart membranes from two transgene positive lines displayed approximately 1,000-fold overexpression of A1AR (6,574 +/- 965 and 10,691 +/-(More)
Obesity with associated metabolic disturbances worsens ischaemic heart disease outcomes, and rodent studies confirm that obesity with insulin-resistance impairs myocardial resistance to ischemia-reperfusion (I-R) injury. However, the effects of obesity per se are unclear, with some evidence for paradoxic cardioprotection (particularly in older subjects). We(More)