John P. Carter

Learn More
We have previously shown that topotecan, a topoisomerase I poison, inhibits hypoxia-inducible factor (HIF)-1alpha protein accumulation by a DNA damage-independent mechanism. Here, we report that daily administration of topotecan inhibits HIF-1alpha protein expression in U251-HRE glioblastoma xenografts. Concomitant with HIF-1alpha inhibition, topotecan(More)
Lentiviral vectors (LVs) are capable of labeling a broad spectrum of cell types, achieving stable expression of transgenes. However, for in vivo studies, the duration of marker gene expression has been highly variable. We have developed a series of LVs harboring different promoters for expressing reporter gene in mouse cells. Long-term culture and colony(More)
A phase I trial of ABT-888 (veliparib), a PARP inhibitor, in combination with topotecan, a topoisomerase I-targeted agent, was carried out to determine maximum tolerated dose (MTD), safety, pharmacokinetics, and pharmacodynamics of the combination in patients with refractory solid tumors and lymphomas. Varying schedules and doses of intravenous topotecan in(More)
Inhibition of hypoxia inducible factor-1 (HIF-1) is an attractive therapeutic strategy to target the tumor microenvironment. However, HIF-1 inhibitors may have limited activity as single agents and combination therapies may be required. We tested the hypothesis that HIF-1 inhibition in a hypoxic-stressed tumor microenvironment, which could be generated by(More)
BACKGROUND Topoisomerase I (Top1) is a proven target for cancer therapeutics. Recent data from the Fluorouracil, Oxaliplatin, CPT-11: Use and Sequencing (FOCUS) trial demonstrated that nuclear staining of Top1 correlates with chemotherapeutic efficacy. Such a correlation may help identify patients likely to respond to Top1 inhibitors and illuminate their(More)
PURPOSE The use of genetically engineered mouse (GEM) models for preclinical testing of anticancer therapies is hampered by variable tumor latency, incomplete penetrance, and complicated breeding schemes. Here, we describe and validate a transplantation strategy that circumvents some of these difficulties. EXPERIMENTAL DESIGN Tumor fragments from(More)
We have previously shown that topotecan, a topoisomerase I poison, inhibits hypoxia-inducible factor (HIF)-1 protein accumulation by a DNA damage-independent mechanism. Here, we report that daily administration of topotecan inhibits HIF-1 protein expression in U251-HRE glioblastoma xenografts. Concomitant with HIF-1 inhibition, topotecan caused a(More)
BACKGROUND Xenograft samples used to test anti-cancer drug efficacies and toxicities in vivo contain an unknown mix of mouse and human cells. Evaluation of drug activity can be confounded by samples containing large amounts of contaminating mouse tissue. We have developed a real-time quantitative polymerase chain reaction (qPCR) assay using TaqMan(More)
Cancer-related deaths are caused principally by recurrence and metastasis arising from residual disease, whose therapeutic responses has been suggested to be substantially different from primary tumors. However, experimental animal models designed for evaluating the therapeutic responses of residual disease are mostly lacking. To overcome this deficiency,(More)
Preclinical therapeutic assessment currently relies on the growth response of established human cell lines xenografted into immunocompromised mice, a strategy that is generally not predictive of clinical outcomes. Immunocompetent genetically engineered mouse (GEM)-derived tumor allograft models offer highly tractable preclinical alternatives and facilitate(More)
  • 1