Learn More
Calcium-activated potassium channels are fundamental regulators of neuronal excitability, participating in interspike interval and spike-frequency adaptation. For large-conductance calcium-activated potassium (BK) channels, recent experiments have illuminated the fundamental biophysical mechanisms of gating, demonstrating that BK channels are voltage gated(More)
Members of a previously unidentified family of potassium channel subunits were cloned from rat and human brain. The messenger RNAs encoding these subunits were widely expressed in brain with distinct yet overlapping patterns, as well as in several peripheral tissues. Expression of the messenger RNAs in Xenopus oocytes resulted in calcium-activated,(More)
The slow afterhyperpolarization that follows an action potential is generated by the activation of small-conductance calcium-activated potassium channels (SK channels). The slow afterhyperpolarization limits the firing frequency of repetitive action potentials (spike-frequency adaptation) and is essential for normal neurotransmission. SK channels are(More)
Small-conductance Ca-activated K+ channels play an important role in modulating excitability in many cell types. These channels are activated by submicromolar concentrations of intracellular Ca2+, but little is known about the gating kinetics upon activation by Ca2+. In this study, single channel currents were recorded from Xenopus oocytes expressing the(More)
Small-conductance Ca(2+)-activated K(+) channels (SK channels) influence the induction of synaptic plasticity at hippocampal CA3-CA1 synapses. We find that in mice, SK channels are localized to dendritic spines, and their activity reduces the amplitude of evoked synaptic potentials in an NMDA receptor (NMDAR)-dependent manner. Using combined two-photon(More)
In most central neurons, action potentials are followed by an afterhyperpolarization (AHP) that controls firing pattern and excitability. The medium and slow components of the AHP have been ascribed to the activation of small conductance Ca(2+)-activated potassium (SK) channels. Cloned SK channels are heteromeric complexes of SK alpha-subunits and(More)
Apamin-sensitive, small-conductance, Ca2+-activated K+ channels (SK channels) modulate neuronal excitability in CA1 neurons. Blocking all SK channel subtypes with apamin facilitates the induction of hippocampal synaptic plasticity and enhances hippocampal learning. In CA1 dendrites, SK channels are activated by Ca2+ through NMDA receptors and restrict(More)
Small conductance calcium-activated potassium channels show a distinct pharmacology. Some, but not all, are blocked by the peptide toxin apamin, and apamin-sensitive channels are also blocked by d-tubocurarine. Cloned SK channels (small conductance calcium-activated potassium channel) recapitulate these properties. We have investigated the structural basis(More)
Long-term potentiation (LTP) of synaptic strength at Schaffer collateral synapses has largely been attributed to changes in the number and biophysical properties of AMPA receptors (AMPARs). Small-conductance Ca(2+)-activated K(+) channels (SK2 channels) are functionally coupled with NMDA receptors (NMDARs) in CA1 spines such that their activity modulates(More)