Learn More
Anterior cruciate ligament (ACL) continues to be a significant medical issue for athletes participating in sports and recreational activities. Biomechanical analyses have determined that anterior shear force is the most direct loading mechanism of the ACL and a probable component of noncontact ACL injury. The purpose of this study was to examine the(More)
BACKGROUND In order to improve neuromuscular and biomechanical characteristic deficits in female athletes, numerous injury prevention programs have been developed and have successfully reduced the number of knee ligament injuries. However, few have investigated the neuromuscular and biomechanical changes following these training programs. It is also largely(More)
BACKGROUND Jumping and landing tasks that have a change in direction have been implicated as a mechanism of noncontact anterior cruciate ligament injury. Yet, to date, neuromuscular and biomechanical research has focused primarily on straight landing tasks during planned jumps. HYPOTHESIS Lateral and reactive jumps increase the neuromuscular and(More)
Research examining the menstrual cycle and its relationship to ACL injury has focused on determining the incidence of ACL injury during the different phases of the menstrual cycle and assessing the changes in neuromuscular and biomechanical characteristics between these phases. Conflicting results warrant further investigation to determine if neuromuscular(More)
Although anterior cruciate ligament (ACL) injuries are not gender specific, they do occur at a significantly greater rate in females. Biomechanical and neuromuscular deficits in females have been documented as factors contributing to ACL injuries, however little research has been conducted in the area of preventative training programs to improve these(More)
INTRODUCTION Physical training for United States military personnel requires a combination of injury prevention and performance optimization to counter unintentional musculoskeletal injuries and maximize warrior capabilities. Determining the most effective activities and tasks to meet these goals requires a systematic, research-based approach that is(More)
The additional weight of combat and protective equipment carried by soldiers on the battlefield and insufficient adaptations to this weight may increase the risk of musculoskeletal injury. The objective of this study was to determine the effects of the additional weight of equipment on knee kinematics and vertical ground reaction forces (VGRF) during(More)
The purpose of this study was to compare physical and physiological fitness test performance between Soldiers meeting the Department of Defense (DoD) body fat standard (< or = 18%) and those exceeding the standard (> 18%). Ninety-nine male 101st Airborne (Air Assault) Soldiers were assigned to group 1: < or = 18% body fat (BF) or group 2: > 18% BE. Groups 1(More)
Musculoskeletal injuries have long been a problem in general purpose forces, yet anecdotal evidence provided by medical, human performance, and training leadership suggests musculoskeletal injuries are also a readiness impediment to Special Operations Forces (SOF). The purpose of this study was to describe the injury epidemiology of SOF utilizing(More)
To examine the kinematic characteristics of the hip and knee during a single-leg stop-jump task before and after exercise-to-fatigue, and to determine if the fatigue response is gender-dependent. Lower extremity kinematic measurements were taken of male and female subjects while they performed a sports functional task before and after fatigue developed from(More)