Learn More
The study aim was to develop and apply an experimental technique to determine the biomechanical effect of polymethylmethacrylate (PMMA) and calcium phosphate (CaP) cement on the stiffness and strength of augmented vertebrae following traumatic fracture. Twelve burst type fractures were generated in porcine three-vertebra segments. The specimens were(More)
The aim of the study was to use a computational and experimental approach to evaluate, compare and predict the ability of calcium phosphate (CaP) and poly (methyl methacrylate) (PMMA) augmentation cements to restore mechanical stability to traumatically fractured vertebrae, following a vertebroplasty procedure. Traumatic fractures (n = 17) were generated in(More)
In this study, the fracture properties of Perspex, acrylic bone cement prepared using a commercially available reduced pressure mixing system and a bone cement-bone composite were compared under different test conditions. The method used was the double-torsion (DT) test. The observations made from this investigation are as follows. The fracture toughness(More)
Poly-L-lactide (PLLA) is one of the most significant members of a group of polymers regarded as bioresorbable. The degradation of PLLA proceeds through hydrolysis of the ester linkages in the polymer's backbone; however, the time for the complete resorption of orthopaedic devices manufactured from PLLA is known to be in excess of five years in a normal(More)
Wear particle accumulation is one of the main contributors to osteolysis and implant failure in hip replacements. Altered kinematics produce significant differences in wear rates of hip replacements in simulator studies due to varying degrees of multidirectional motion. Gait analysis data from 153 hip-replacement patients 10-years post-operation were used(More)
OBJECTIVES This study compares the probabilities of survival and modes of failure of cast full-coverage crowns bonded with five cements when subjected to tensile pull-off testing. METHODS Five groups of 25 sound human premolar teeth were prepared for full-coverage crowns, impressions recorded and customized castings fabricated in Ni-Cr-Mb bonding alloy.(More)
Calcium phosphate cements have the potential to be successful in minimally invasive surgical techniques, like that of vertebroplasty, due to their ability to be injected into a specific bone cavity. These bone cements set to produce a material similar to that of the natural mineral component in bone. Due to the ceramic nature of these materials they are(More)
In this study, the fatigue strengths of acrylic cement prepared by various commercially available reduced pressure mixing systems were compared with the fatigue strength of cement mixed by hand (control) under atmospheric conditions. The following observations were made from this investigation. The mean fatigue strength of reduced pressure mixed acrylic(More)
Shrinkage of bone cement is reported primarily as a consequence of polymerisation, however thermal shrinkage also occurs as a result of its exothermic reaction. It is proposed that the latter effect is important, since it occurs late in the curing cycle at a time when the cement has attained its mechanical properties as a solid, and that residual stresses(More)
Perception of a leg length discrepancy post total hip arthroplasty (THA) is one of the most common sources of patient dissatisfaction and can have a direct influence on the considered success of the operation.This research examined postoperative perception of imposed limb discrepancies in a group of THA patients compared to a group of participants with no(More)