John N. Russell

Learn More
Diamond, because of its electrical and chemical properties, may be a suitable material for integrated sensing and signal processing. But methods to control chemical or biological modifications on diamond surfaces have not been established. Here, we show that nanocrystalline diamond thin-films covalently modified with DNA oligonucleotides provide an(More)
Hydrogen-terminated diamond surfaces can be covalently modified with molecules bearing a terminal vinyl (C=C) group via a photochemical process using sub-band-gap light at 254 nm. We have investigated the photochemical modification of hydrogen-terminated surfaces of nanocrystalline and single-crystal diamond (111) to help understand the structure of the(More)
We have investigated the frequency-dependent interfacial electrical properties of nanocrystalline diamond films that were covalently linked to DNA oligonucleotides and how these properties are changed upon exposure to complementary and noncomplementary DNA oligonucleotides. Frequency-dependent electrical measurements at the open-circuit potential show(More)
Recent investigations have shown that cycloaddition reactions, widely used in organic chemistry to form ring compounds, can also be applied to link organic molecules to the (001) surfaces of crystalline silicon, germanium, and diamond. While these surfaces are comprised of Si=Si, Ge=Ge, and C=C structural units that resemble the C=C bonds of organic(More)
Polyester polyurethane (PU) coatings are widely used to help protect underlying structural surfaces but are susceptible to biological degradation. PUs are susceptible to degradation by Pseudomonas species, due in part to the degradative activity of secreted hydrolytic enzymes. Microorganisms often respond to environmental cues by secreting enzymes or(More)
The integration of biological molecules with semiconducting materials such as silicon and diamond has great potential for the development of new types of bioelectronic devices, such as biosensors and bioactuators. We have investigated the electrical properties of the antibody-antigen modified diamond and silicon surfaces using electrical impedance(More)
Diamond is an excellent substrate for many sensing and electronic applications because of its outstanding stability in biological and aqueous environments. When the diamond surface is H-terminated, it can be covalently modified with organic alkenes using wet photochemical methods that are surface-mediated and initiated by the ejection of electrons from the(More)
Microbial biofilms cause the deterioration of polymeric coatings such as polyurethanes (PUs). In many cases, microbes have been shown to use the PU as a nutrient source. The interaction between biofilms and nutritive substrata is complex, since both the medium and the substratum can provide nutrients that affect biofilm formation and biodeterioration.(More)