Learn More
We present a formalism to compute the probability of an amino acid sequence conformation being native-like, given a set of pairwise atom-atom distances. The formalism is used to derive three discriminatory functions with different types of representations for the atom-atom contacts observed in a database of protein structures. These functions include two(More)
Genetic algorithms methods utilize the same optimization procedures as natural genetic evolution, in which a population is gradually improved by selection. We have developed a genetic algorithm search procedure suitable for use in protein folding simulations. A population of conformations of the polypeptide chain is maintained, and conformations are changed(More)
Livermore Prediction Center provides basic infrastructure for the CASP (Critical Assessment of Structure Prediction) experiments, including prediction processing and verification servers, a system of prediction evaluation tools, and interactive numerical and graphical displays. Here we outline the essentials of our approach, with discussion of the(More)
BACKGROUND The relationship between disease susceptibility and genetic variation is complex, and many different types of data are relevant. We describe a web resource and database that provides and integrates as much information as possible on disease/gene relationships at the molecular level. DESCRIPTION The resource http://www.SNPs3D.org has three(More)
The protein folding problem and the notion of NP-completeness and NP-hardness are discussed. A lattice model is suggested to capture the essence of protein folding. For this model we present a proof that finding the lowest free energy conformation belongs to the class of NP-hard problems. The implications of the proof are discussed and we suggest that the(More)
The completion of the 5,373,180-bp genome sequence of the marine psychrophilic bacterium Colwellia psychrerythraea 34H, a model for the study of life in permanently cold environments, reveals capabilities important to carbon and nutrient cycling, bioremediation, production of secondary metabolites, and cold-adapted enzymes. From a genomic perspective, cold(More)
This article is an introduction to the special issue of the journal PROTEINS, dedicated to the ninth Critical Assessment of Structure Prediction (CASP) experiment to assess the state of the art in protein structure modeling. The article describes the conduct of the experiment, the categories of prediction included, and outlines the evaluation and assessment(More)
Inherited disease susceptibility in humans is most commonly associated with single nucleotide polymorphisms (SNPs). The mechanisms by which this occurs are still poorly understood. We have analyzed the effect of a set of disease-causing missense mutations arising from SNPs, and a set of newly determined SNPs from the general population. Results of in vitro(More)
This article is an introduction to the special issue of the journal Proteins, dedicated to the eighth CASP experiment to assess the state of the art in protein structure prediction. The article describes the conduct of the experiment, the categories of prediction included, and outlines the evaluation and assessment procedures. Highlights are the first blind(More)
Structural genomics has the goal of obtaining useful, three-dimensional models of all proteins by a combination of experimental structure determination and comparative model building. We evaluate different strategies for optimizing information return on effort. The strategy that maximizes structural coverage requires about seven times fewer structure(More)