Learn More
TeraGrid is a national-scale computational science facility supported through a partnership among thirteen institutions, with funding from the US National Science Foundation [1]. Initially created through a Major Research Equipment Facilities Construction (MREFC [2]) award in 2001, the TeraGrid facility began providing production computing, storage,(More)
This article describes the Open Science Grid, a large distributed computational infrastructure in the United States which supports many different high-throughput scientific applications, and partners (federates) with other infrastructures nationally and internationally to form multi-domain integrated distributed systems for science. The Open Science Grid(More)
An increasing number of algorithms for biochemical network inference from experimental data require discrete data as input. For example, dynamic Bayesian network methods and methods that use the framework of finite dynamical systems, such as Boolean networks, all take discrete input. Experimental data, however, are typically continuous and represented by(More)
The Open Science Grid (OSG) includes work to enable new science, new scientists, and new modalities in support of computationally based research. There are frequently significant sociological and organizational changes required in transformation from the existing to the new. OSG leverages its deliverables to the large-scale physics experiment member(More)
The NSF TeraGrid project has designed and constructed a federated integrated information service (IIS) to serve its capability publishing and discovery needs. This service has also proven helpful in automating TeraGrid's operational activities. We describe the requirements that motivated this work; IIS's system architecture, information architecture, and(More)
In this paper we discuss two propositions: the supply and demand of knowledge, and network externalities. We outline the characteristics that distinguish knowledge intensive industries from the general run of manufacturing and service businesses. Knowledge intensity and knowledge specialisation has developed as markets and globalisation have grown, leading(More)
Risk assessments often must consider exposures that vary over time or for which the exposure duration of concern differs from the available data, and a variety of extrapolation procedures have been devised accordingly. The present experiments explore the relationship(s) between exposure concentration (C) and time (t) to investigate procedures for assessing(More)
In this paper we argue that the pace and scale of development in the information and communication technology industries (ICT) has had and continues to have major effects on the industry economics and competitive dynamics generally. We maintain that the size of changes in demand and supply conditions is forcing companies to make significant changes in the(More)