John Masani Nduko

Learn More
Xylose, which is a major constituent of lignocellulosic biomass, was utilized for the production of poly(lactate-co-3-hydroxybutyrate) [P(LA-co-3HB)], having transparent and flexible properties. The recombinant Escherichia coli JW0885 (pflA(-)) expressing LA-polymerizing enzyme (LPE) and monomer supplying enzymes grown on xylose produced a copolymer having(More)
Poly[3-hydroxybutyrate-co-3-hydroxyvalerate(3HV)] was produced in recombinant Escherichia coli LS5218 from ruthenium-catalyzed cellulose hydrolysate and propionate. The strain was found to be resistant to 5-hydroxymethylfurfural (5-HMF), which is a major inhibitory byproduct generated in the cellulose hydrolysis reaction. The 3HV fraction was successfully(More)
Poly(lactate-co-3-hydroxybutyrate) (P(LA-co-3HB)) was previously produced from xylose in engineered Escherichia coli. The aim of this study was to increase the polymer productivity and LA fraction in P(LA-co-3HB) using two metabolic engineering approaches: (1) deletions of competing pathways to lactate production and (2) overexpression of a galactitol(More)
The gene encoding an FMN-dependent NADH azoreductase, AzrG, from thermophilic Geobacillus stearothermophilus was cloned and functionally expressed in recombinant Escherichia coli. Purified recombinant AzrG is a homodimer of 23 kDa and bore FMN as a flavin cofactor. The optimal temperature of AzrG was 85 °C for the degradation of Methyl Red (MR). AzrG(More)
P[(R)-2-hydroxybutyrate] [P((R)-2HB)] is an aliphatic polyester analogous to poly(lactic acid) (PLA). However, little has been known for its properties because of a high cost of commercially available chiral 2HB as a starting substance for chemical polymer synthesis. In this study, P[(R)-2HB] and P[(R)-2HB-co-(R)-lactate] [P((R)-2HB-co-(R)-LA)] with a new(More)
  • 1