Learn More
Despite generation upon generation of scaling, computer chips have until now remained essentially 2-dimensional. Improvements in on-chip wire delay and in the maximum number of I/O per chip have not been able to keep up with transistor performance growth; it has become steadily harder to hide the discrepancy. 3D chip technologies come in a number of(More)
In this talk I will overview a survey paper developed from the DOE-­‐sponsored Institute for Computing in Science Workshop on " Multiphysics Simulations: Challenges and Opportunities. " In this paper, we considered multiphysics applications from algorithmic and architectural perspectives where " architectural " included both software and hardware(More)
We have developed a highly efficient and scalable cardiac electrophysiology simulation capability that supports groundbreaking resolution and detail to elucidate the mechanisms of sudden cardiac death from arrhythmia. We can simulate thousands of heartbeats at a resolution of 0.1 mm, comparable to the size of cardiac cells, thereby enabling scientific(More)
Algorithms are described for the resolution of shared vertices and higher-dimensional interfaces on domain-decomposed parallel mesh, and for ghost exchange between neighboring processors. Performance data is given for large (up to 64M tet and 32M hex element) meshes on up to 16k processors. Shared interface resolution for structured mesh is also described.(More)
Computational Fluid Dynamics (CFD) is an increasingly important application domain for computational scientists. In this paper, we propose and analyze optimizations necessary to run CFD simulations consisting of multi-billion-cell mesh models on large processor systems. Our investigation leverages the general industrial Navier-Stokes open-source CFD(More)
We report on a demonstration of loose multiphysics coupling between a basin modeling code and a seismic code running on a large parallel machine. Multiphysics coupling, which is one critical capability for a high performance computing (HPC) framework, was implemented using the MOAB open-source mesh and field database. MOAB provides for code coupling by(More)
An accurate and simple electronic analog of a Josephson junction has been constructed and found useful in studying junction behavior in many circuits. The junction voltage is integrated using appropriate resetting circuitry to calculate the phase phi, and a current proportional to sinphi is generated. A simple nonlinear network for modeling the(More)
  • 1