Learn More
The Pascal Visual Object Classes (VOC) challenge is a benchmark in visual object category recognition and detection, providing the vision and machine learning communities with a standard dataset of images and annotation, and standard evaluation procedures. Organised annually from 2005 to present, the challenge and its associated dataset has become accepted(More)
This paper proposes a new approach to learning a discriminative model of object classes, incorporating appearance, shape and context information efficiently. The learned model is used for automatic visual recognition and semantic segmentation of photographs. Our discriminative model exploits novel features, based on textons, which jointly model shape and(More)
The Pascal Visual Object Classes (VOC) challenge consists of two components: (i) a publicly available dataset of images together with ground truth annotation and standardised evaluation software; and (ii) an annual competition and workshop. There are five challenges: classification, detection, segmentation, action classification, and person layout. In this(More)
This paper details a new approach for learning a discriminative model of object classes, incorporating texture, layout, and context information efficiently. The learned model is used for automatic visual understanding and semantic segmentation of photographs. Our discriminative model exploits texture-layout filters, novel features based on textons, which(More)
This paper presents a new algorithm for the automatic recognition of object classes from images (categorization). Compact and yet discriminative appearance-based object class models are automatically learned from a set of training images. The method is simple and extremely fast, making it suitable for many applications such as semantic image retrieval, Web(More)
Bayesian inference is now widely established as one of the principal foundations for machine learning. In practice, exact inference is rarely possible, and so a variety of approximation techniques have been developed, one of the most widely used being a deterministic framework called variational inference. In this paper we introduce Variational Message(More)
We address the problem of learning object class models and object segmentations from unannotated images. We introduce LOCUS (learning object classes with unsupervised segmentation) which uses a generative probabilistic model to combine bottom-up cues of color and edge with top-down cues of shape and pose. A key aspect of this model is that the object(More)
This paper addresses the problem of detecting and segmenting partially occluded objects of a known category. We first define a part labelling which densely covers the object. Our Layout Consistent Random Field (LayoutCRF) model then imposes asymmetric local spatial constraints on these labels to ensure the consistent layout of parts whilst allowing for(More)
We present a system for inserting new objects into existing photographs by querying a vast image-based object library, pre-computed using a publicly available Internet object database. The central goal is to shield the user from all of the arduous tasks typically involved in image compositing. The user is only asked to do two simple things: 1) pick a 3D(More)
This paper presents a new model of object classes which incorporates appearance and shape information jointly. Modeling objects appearance by distributions of visual words has recently proven successful. Here appearancebased models are augmented by capturing the spatial arrangement of visual words. Compact spatial modeling without loss of discrimination is(More)