John M. Stark

Learn More
Moisture may limit microbial activity in a wide range of environments including salt water, food, wood, biofilms, and soils. Low water availability can inhibit microbial activity by lowering intracellular water potential and thus reducing hydration and activity of enzymes. In solid matrices, low water content may also reduce microbial activity by(More)
Previous studies comparing invaded and non-invaded sites suggest that cheatgrass (Bromus tectorum L.) causes soil N cycling to increase. Unfortunately, these correlative studies fail to distinguish whether cheatgrass caused the differences in N cycling, or if cheatgrass simply invaded sites where N availability was greater. We measured soil C and N(More)
Urbanization substantially increases nitrogen (N) inputs and hydrologic losses relative to wildland ecosystems, although the fate of N additions to lawns and remnant grasslands remains contested. In montane semi-arid ecosystems, N cycling is often closely coupled to snowmelt (the dominant period of infiltration) and snow cover, which impact soil temperature(More)
Plant-soil feedbacks are an important aspect of invasive species success. One type of feedback is alteration of soil nutrient cycling. Cheatgrass invasion in the western USA is associated with increases in plant-available nitrogen (N), but the mechanism for this has not been elucidated. We labeled cheatgrass and crested wheatgrass, a common perennial grass(More)
  • 1