John M. Spitsbergen

Learn More
Glial cell line-derived neurotrophic factor (GDNF) is produced by skeletal muscle and affects peripheral motor neurons. Elevated expression of GDNF in skeletal muscle leads to hyperinnervation of neuromuscular junctions, whereas postnatal administration of GDNF causes synaptic remodeling at the neuromuscular junction. Studies have demonstrated that altered(More)
Current evidence suggests that exercise and glial cell line-derived neurotrophic factor (GDNF) independently cause significant morphological changes in the neuromuscular system. The aim of the current study was to determine if increased physical activity regulates GDNF protein content in rat skeletal muscle. Extensor Digitorum Longus (EDL) and Soleus (SOL)(More)
Neurotrophic factors may play a role in exercise-induced neuroprotective effects, however it is not known if exercise mediates changes in glial cell line-derived neurotrophic factor (GDNF) protein levels in the spinal cord. The aim of the current study was to determine if 2 weeks of exercise alters GDNF protein content in the lumbar spinal cord of young and(More)
Glial cell line-derived neurotrophic factor (GDNF) supports and maintains the neuromuscular system during development and through adulthood by promoting neuroplasticity. The aim of this study was to determine if different modes of exercise can promote changes in GDNF expression and neuromuscular junction (NMJ) morphology in slow- and fast-twitch muscles.(More)
Glial cell line-derived neurotrophic factor (GDNF) has been identified as a potent survival factor for both central and peripheral neurons. GDNF has been shown to be a potent survival factor for motor neurons during programmed cell death and continuous treatment with GDNF maintains hyperinnervation of skeletal muscle in adulthood. However, little is known(More)
Polychlorinated biphenyls (PCBs) are persistent environmental pollutants that affect nervous system function. Glial cells are among the first lines of defense in the nervous system and are involved in activities, including production of neurotrophic factors, which maintain an environment optimally suited for neuronal function. In this study, we investigated(More)
Glial cell line-derived neurotrophic factor (GDNF) may play a role in delaying the onset of aging and help compress morbidity by preventing motor unit degeneration. Exercise has been shown to alter GDNF expression differently in slow- and fast-twitch myofibers. The aim was to examine the effects of different intensities (10, 20, ~30, and ~40 m·min(-1)) of(More)
The cardiac neuronal norepinephrine (NE) transporter (NET) in sympathetic neurons is responsible for uptake of released NE from the neuroeffector junction. The purpose of this study was to assess the chamber distribution of cardiac NET protein measured using [(3)H]nisoxetine binding in rat heart membranes and to correlate NE content to NET amount. In whole(More)
Music is used in healthcare to promote physical and psychological well-being. As clinical applications of music continue to expand, there is a growing need to understand the biological mechanisms by which music influences health. Here we explore the neurochemistry and social flow of group singing. Four participants from a vocal jazz ensemble were(More)
The focus of this review is to highlight the importance of glial cell line-derived neurotrophic factor (GDNF) for the motor nervous system. GDNF is the most potent survival factor for motor neurons, where it enhances maintenance and survival of both developing and mature motor neurons in vivo and in vitro. GDNF aids in neuromuscular junction formation,(More)