John M. Pawelek

Learn More
Systemically administered tumor-targeted Salmonella has been developed as an anticancer agent, although its use could be limited by the potential induction of tumor necrosis factor alpha (TNFalpha)-mediated septic shock stimulated by lipid A. Genetic modifications of tumor-targeting Salmonella that alter lipid A and increase safety must, however, retain the(More)
There is evidence that L-tyrosine and L-dihydroxyphenylalanine (L-DOPA), besides serving as substrates and intermediates of melanogenesis, are also bioregulatory agents acting not only as inducers and positive regulators of melanogenesis but also as regulators of other cellular functions. These can be mediated through action on specific receptors or through(More)
Live bacteria were first actively used in the treatment of cancer nearly 150 years ago, work that ultimately led to the study of immunomodulation. Today, with the discovery of bacterial strains that specifically target tumours, and aided by genomic sequencing and genetic engineering, there is new interest in the use of bacteria as tumour vectors.(More)
The causes of metastasis remain elusive despite vast information on cancer cells. We posit that cancer cell fusion with macrophages or other migratory bone marrow-derived cells (BMDCs) provides an explanation. BMDC-tumour hybrids have been detected in numerous animal models and recently in human cancer. Molecular studies indicate that gene expression in(More)
Studies were conducted on the hypothesis that melanoma metastasis might be initiated through the gener-ation of hybrids comprised of cells of the primary tumor and tumor-infiltrating leukocytes. Fusion hybrids were generated in vitro between weakly metastatic Cloudman S91 mouse melanoma cells and normal mouse or human macrophages. Hybrids were implanted(More)
There has been little investigation of bacteria as gene delivery vectors. Here, we demonstrate that genetically engineered Salmonella have many of the desirable properties of a delivery vector, including targeting of multiple tumors from a distant inoculation site, selective replication within tumors, tumor retardation, and the ability to express effector(More)
The biosynthesis of melanin is initiated by the catalytic oxidation of tyrosine to dopa by tyrosinase in a reaction that requires dopa as a cofactor. Tyrosine then catalyzes the dehydrogenation of dopa to dopaquinone. The subsequent reactions can proceed spontaneously in vitro. Tyrosinase, purified from murine melanomas and the skins of brown mice, has now(More)
We describe results demonstrating the positive regulation of melanogenesis by two substrates of the melanogenic pathway. We have found that L-tyrosine and L-dihydroxyphenylalanine (L-dopa), whose metabolic fates are affected by the activity of that pathway, can also act as its regulators. In living pigment cells, tyrosinase (EC, a crucial and(More)
It is demonstrated that ultraviolet B (UVB) radiation stimulates increased expression of the proopiomelanocortin (POMC) gene which is accompanied by production and release of alpha-melanocyte stimulating hormone (alpha-MSH) and adrenocorticotropin (ACTH) by both normal and malignant human melanocytes and keratinocytes. The production and release of both(More)
We show that malignant melanoma cells display high levels of autophagy, a cytoplasmic process of protein and organelle digestion that provides an energy source in times of nutrient deprivation. In a panel of 12 cases of cutaneous malignant melanoma of the superficial spreading type, cells in florid melanoma in situ (MIS) and invasive cells in the dermis(More)