John M. Henderson

Learn More
Many experiments have shown that the human visual system makes extensive use of contextual information for facilitating object search in natural scenes. However, the question of how to formally model contextual influences is still open. On the basis of a Bayesian framework, the authors present an original approach of attentional guidance by global scene(More)
In human vision, acuity and color sensitivity are best at the point of fixation, and the visual-cognitive system exploits this fact by actively controlling gaze to direct fixation towards important and informative scene regions in real time as needed. How gaze control operates over complex real-world scenes has recently become of central concern in several(More)
Three areas of high-level scene perception research are reviewed. The first concerns the role of eye movements in scene perception, focusing on the influence of ongoing cognitive processing on the position and duration of fixations in a scene. The second concerns the nature of the scene representation that is retained across a saccade and other brief time(More)
The nature of the information retained from previously fixated (and hence attended) objects in natural scenes was investigated. In a saccade-contingent change paradigm, participants successfully detected type and token changes (Experiment 1) or token and rotation changes (Experiment 2) to a target object when the object had been previously attended but was(More)
Where does one attend when viewing dynamic scenes? Research into the factors influencing gaze location during static scene viewing have reported that low-level visual features contribute very little to gaze location especially when opposed by high-level factors such as viewing task. However, the inclusion of transient features such as motion in dynamic(More)
Two experiments were conducted to examine the effects of foveal processing difficulty on the perceptual span in reading. Subjects read sentences while their eye movements were recorded. By changing the text contingent on the reader's current point of fixation, foveal processing difficulty and the availability of parafoveal word information were(More)
How does the visual system retain and combine information about an object across time and space? This question was investigated by manipulating the spatiotemporal continuity and form continuity of 2 perceptual objects over time. In Experiment 1 the objects were viewed in central vision within a single eye fixation, in Experiment 2 they were viewed across a(More)
What is the nature of the representation formed during the viewing of natural scenes? We tested two competing hypotheses regarding the accumulation of visual information during scene viewing. The first holds that coherent visual representations disintegrate as soon as attention is withdrawn from an object and thus that the visual representation of a scene(More)
Target objects presented within color images of naturalistic scenes were deleted or rotated during a saccade to or from the target object or to a control region of the scene. Despite instructions to memorize the details of the scenes and to monitor for object changes, viewers frequently failed to notice the changes. However, the failure to detect change was(More)
The conclusion that scene knowledge interacts with object perception depends on evidence that object detection is facilitated by consistent scene context. Experiment 1 replicated the I. Biederman, R. J. Mezzanotte, and J. C. Rabinowitz (1982) object-detection paradigm. Detection performance was higher for semantically consistent versus inconsistent objects.(More)