#### Filter Results:

- Full text PDF available (8)

#### Publication Year

2012

2017

- This year (1)
- Last 5 years (9)
- Last 10 years (9)

#### Publication Type

#### Co-author

#### Publication Venue

#### Brain Region

#### Key Phrases

#### Method

Learn More

- John Lipor, Laura Balzano
- 2014 IEEE International Conference on Acoustics…
- 2014

This paper considers the problem of blindly calibrating large sensor networks to account for unknown gain and offset in each sensor. Under the assumption that the true signals measured by the sensors lie in a known lower dimensional subspace, previous work has shown that blind calibration is possible. In practical scenarios, perfect signal subspace… (More)

- John Lipor, Sajid Ahmed, Mohamed-Slim Alouini
- IEEE Transactions on Signal Processing
- 2014

In multiple-input multiple-output (MIMO) radar settings, it is often desirable to transmit power only to a given location or set of locations defined by a beampattern. Transmit waveform design is a topic that has received much attention recently, involving synthesis of both the signal covariance matrix, R, as well as the actual waveforms. Current methods… (More)

- Puneet Rana, John Lipor, Hyong Lee, Wim van Drongelen, Michael H. Kohrman, Barry D. Van Veen
- IEEE Trans. Biomed. Engineering
- 2012

Detection and analysis of epileptic seizures is of clinical and research interest. We propose a novel seizure detection and analysis scheme based on the phase-slope index (PSI) of directed influence applied to multichannel electrocorticogram data. The PSI metric identifies increases in the spatio-temporal interactions between channels that clearly… (More)

- John Lipor, Laura Balzano
- 2015 IEEE 6th International Workshop on…
- 2015

Subspace clustering has typically been approached as an unsupervised machine learning problem. However in several applications where the union of subspaces model is useful, it is also reasonable to assume you have access to a small number of labels. In this paper we investigate the benefit labeled data brings to the subspace clustering problem. We focus on… (More)

- John Lipor, Laura Balzano, Branko Kerkez, Don Scavia
- 2015 53rd Annual Allerton Conference on…
- 2015

Adaptive sampling theory has shown that, with proper assumptions on the signal class, algorithms exist to reconstruct a signal in ℝd with an optimal number of samples. We generalize this problem to when the cost of sampling is not only the number of samples but also the distance traveled between samples. This is motivated by our work studying regions… (More)

- John Lipor, Laura Balzano
- ICML
- 2017

Many clustering problems in computer vision and other contexts are also classification problems, where each cluster shares a meaningful label. Subspace clustering algorithms in particular are often applied to problems that fit this description, for example with face images or handwritten digits. While it is straightforward to request human input on these… (More)

- John Lipor, Sajid Ahmed, Mohamed-Slim Alouini
- 2014 IEEE International Conference on Acoustics…
- 2014

In multiple-input multiple-output (MIMO) radar setting, it is often desirable to design correlated waveforms such that power is transmitted only to a given set of locations, a process known as beampattern design. To design desired beam-pattern, current research uses iterative algorithms, first to synthesize the waveform covariance matrix, R, then to design… (More)

- Xinliang An, Andrew W Caswell, John J Lipor, Scott T Sanders
- Applied spectroscopy
- 2015

A differential evolution (DE) algorithm is applied to a recently developed spectroscopic objective function to select wavelengths that optimize the temperature precision of water absorption thermometry. DE reliably finds optima even when many-wavelength sets are chosen from large populations of wavelengths (here 120 000 wavelengths from a spectrum with… (More)

—Adaptive sampling theory has shown that, with proper assumptions on the signal class, algorithms exist to reconstruct a signal in R d with an optimal number of samples. We generalize this problem to the case of spatial signals, where the sampling cost is a function of both the number of samples taken and the distance traveled during estimation. This is… (More)

- ‹
- 1
- ›