Learn More
 Chromosome locations for gene orthologues of the dormancy-related maize transcription factor VIVIPAROUS-1, encoded by the Vp1 locus on maize chromosome 3, were determined in wheat (Triticum aestivum L.) and rice (Oryza sativa L.) via linkage to markers on existing molecular maps using a cDNA of a wheat Vp1 orthologue as a probe in genomic Southern(More)
The maize (Zea mays) Viviparous 1 (Vp1) transcription factor has been shown previously to be a major regulator of seed development, simultaneously activating embryo maturation and repressing germination. Hexaploid bread wheat (Triticum aestivum) caryopses are characterized by relatively weak embryo dormancy and are susceptible to preharvest sprouting (PHS),(More)
Gene sequences encoding gibberellin (GA) biosynthetic and catabolic enzymes were isolated from ‘Himalaya’ barley. These genes account for most of the enzymes required for the core pathway of GA biosynthesis as well as for the first major catabolic enzyme. By means of DNA gel blot analysis, we mapped coding sequences to chromosome arms in barley and wheat(More)
Hexaploid bread wheat (Triticum aestivum) caryopses are characterised by relatively weak embryo dormancy and display pre-harvest sprouting (PHS) under cool moist conditions. The phenotype of sprouted wheat is very similar to that of the maize seed-specific mutation viviparous 1 (vp1) and to abi3 in Arabidopsis. VP1 has been shown to be a transcription(More)
Grain development, germination and plant development under abiotic stresses are areas of biology that are of considerable interest to the cereal community. Within the Investigating Gene Function programme we have produced the resources required to investigate alterations in the transcriptome of hexaploid wheat during these developmental processes. We have(More)
Gibberellins A(1), A(3), A(8), A(19), A(20), and A(29) were identified by full scan gas chromatography-mass spectrometry in leaf sheath segments of 7-day-old barley (Hordeum vulgare L. cv Golden Promise) seedlings grown at 20 degrees C under long days. In a segregating population of barley, cv Herta (Cb 3014), containing the recessive slender allele, (sln(More)
Embryo and caryopsis dormancy, abscisic acid (ABA) responsiveness, after-ripening (AR), and the disorder pre-harvest sprouting (PHS) were investigated in six genetically related wheat varieties previously characterized as resistant, intermediate, or susceptible to PHS. Timing of caryopsis AR differed between varieties; AR occurred before harvest ripeness in(More)
In near-isogenic lines of winter wheat (Triticum aestivum L. cv. Maris Huntsman) grown at 20° C under long days the reduced-height genes, Rht1 (semi-dwarf) and Rht3 (dwarf) reduced the rate of extension of leaf 2 by 12% and 52%, respectively, compared with corresponding rht (tall) lines. Lowering the growing temperature from 20° to 10° C reduced the rate of(More)
Near-isogenic wheat (Triticum aestivum L.) lines differing in height-reducing (Rht) alleles were used to investigate the effects of temperature on endogenous gibberellin (GA) levels and seedling growth response to applied GA(3). Sheath and lamina lengths of the first leaf were measured in GA treated and control seedlings, grown at 11, 18, and 25 degrees C,(More)
Ectopic expression of a gibberellin 2-oxidase gene (PcGA2ox1) decreased the content of bioactive gibberellins (GAs) in transgenic wheat, producing a range of dwarf plants with different degrees of severity. In at least one case, a single transformation event gave rise to T(1) plants with different degrees of dwarfism, the phenotypes being stably inherited(More)