John L. Stebbins

Learn More
Glutamate is an essential excitatory neurotransmitter regulating brain functions. Excitatory amino acid transporter (EAAT)-2 is one of the major glutamate transporters expressed predominantly in astroglial cells and is responsible for 90% of total glutamate uptake. Glutamate transporters tightly regulate glutamate concentration in the synaptic cleft.(More)
JNK is a stress-activated protein kinase that modulates pathways implicated in a variety of disease states. JNK-interacting protein-1 (JIP1) is a scaffolding protein that enhances JNK signaling by creating a proximity effect between JNK and upstream kinases. A minimal peptide region derived from JIP1 is able to inhibit JNK activity both in vitro and in(More)
Guided by a combination of nuclear magnetic resonance binding assays and computational docking studies, we synthesized a library of 5,5' substituted Apogossypol derivatives as potent Bcl-XL antagonists. Each compound was subsequently tested for its ability to inhibit Bcl-XL in an in vitro fluorescence polarization competition assay and exert single-agent(More)
In our continued attempts to identify novel and effective pan-Bcl-2 antagonists, we have recently reported a series of compound 2 (Apogossypol) derivatives, resulting in the chiral compound 4 (8r). We report here the synthesis and evaluation on its optically pure individual isomers. Compound 11 (BI-97C1), the most potent diastereoisomer of compound 4,(More)
In melanoma, the activation of pro-survival signaling pathways, such as the AKT and NF-κB pathways, is critical for tumor growth. We have recently reported that the AKT inhibitor BI-69A11 causes efficient inhibition of melanoma growth. Here, we show that in addition to its AKT inhibitory activity, BI-69A11 also targets the NF-κB pathway. In melanoma cell(More)
INTRODUCTION Human cancers are genetically and epigenetically heterogeneous and have the capacity to commandeer a variety of cellular processes to aid in their survival, growth and resistance to therapy. One strategy is to overexpress proteins that suppress apoptosis, such as the Bcl-2 family protein Mcl-1. The Mcl-1 protein plays a pivotal role in(More)
We report comprehensive structure-activity relationship studies on a novel series of c-Jun N-terminal kinase (JNK) inhibitors. The compounds are substrate competitive inhibitors that bind to the docking site of the kinase. The reported medicinal chemistry and structure-based optimizations studies resulted in the discovery of selective and potent thiadiazole(More)
Overexpression of antiapoptotic Bcl-2 family proteins is commonly related with tumor maintenance, progression, and chemoresistance. Inhibition of these antiapoptotic proteins is an attractive approach for cancer therapy. Guided by nuclear magnetic resonance (NMR) binding assays, a series of 5,5' substituted compound 6a (Apogossypolone) derivatives was(More)
Membrane type-1 matrix metalloproteinase (MT1-MMP) is a promising drug target in malignancy. The structure of MT1-MMP includes the hemopexin domain (PEX) that is distinct from and additional to the catalytic domain. Current MMP inhibitors target the conserved active site in the catalytic domain and, as a result, repress the proteolytic activity of multiple(More)
The Hap4 protein of the budding yeast Saccharomyces cerevisiae activates the transcription of genes that are required for growth on nonfermentable carbon sources. Previous reports suggested the presence of a transcriptional activation domain within the carboxyl-terminal half of Hap4 that can function in the absence of Gcn5, a transcriptional coactivator(More)