Learn More
MOTIVATION Mass spectrometry yields complex functional data for which the features of scientific interest are peaks. A common two-step approach to analyzing these data involves first extracting and quantifying the peaks, then analyzing the resulting matrix of peak quantifications. Feature extraction and quantification involves a number of interrelated(More)
BACKGROUND Mass spectrometry is actively being used to discover disease-related proteomic patterns in complex mixtures of proteins derived from tissue samples or from easily obtained biological fluids. The potential importance of these clinical applications has made the development of better methods for processing and analyzing the data an active area of(More)
Motivation: Mass spectrometry yields complex functional data for which the features of scientific interest are peaks. A common two-step approach to analyzing these data involves first extracting and quantifying the peaks, then analyzing the resulting matrix of peak quantifications. Feature extraction and quantification involves a number of interrelated(More)
We describe a strategy for comprehending signaling pathways that are active in lung cancer cells and that are targeted by dasatinib using chemical proteomics to identify direct interacting proteins combined with immunoaffinity purification of tyrosine-phosphorylated peptides corresponding to activated tyrosine kinases. We identified nearly 40 different(More)
Adoption of targeted mass spectrometry (MS) approaches such as multiple reaction monitoring (MRM) to study biological and biomedical questions is well underway in the proteomics community. Successful application depends on the ability to generate reliable assays that uniquely and confidently identify target peptides in a sample. Unfortunately, there is a(More)
Little is known about mammalian preRC stoichiometry, the number of preRCs on chromosomes, and how this relates to replicon size and usage. We show here that, on average, each 100-kb of the mammalian genome contains a preRC composed of approximately one ORC hexamer, 4-5 MCM hexamers, and 2 Cdc6. Relative to these subunits, ∼0.35 total molecules of the(More)
The AKT/PKB kinase is a key signaling component of one of the most frequently activated pathways in cancer and is a major target of cancer drug development. Most studies have focused on its activation by Receptor Tyrosine Kinase (RTK) mediated Phosphatidylinositol-3-OH kinase (PI3K) activation or loss of Phosphatase and Tensin homolog (PTEN). We have(More)
The discovery of activating BRAF V600E mutations in 50% of all melanoma patients and the development of small molecule BRAF inhibitors looks set to revolutionize the therapy of disseminated melanoma. However, in the recent clinical trial of the BRAF inhibitor, vemurafenib (PLX4032), a significant percentage of BRAF V600E mutant melanoma patients did not(More)
BACKGROUND Tyrosine kinases drive the proliferation and survival of many human cancers. Thus profiling the global state of tyrosine phosphorylation of a tumor is likely to provide a wealth of information that can be used to classify tumors for prognosis and prediction. However, the comprehensive analysis of tyrosine phosphorylation of large numbers of human(More)
Noise in mass spectrometry can interfere with identification of the biochemical substances in the sample. For example, the electric motors and circuits inside the mass spectrometer or in nearby equipment generate random noise that may distort the true shape of mass spectra. This paper presents a stochastic signal processing approach to analyzing noise from(More)