Learn More
There is increasing evidence that human disturbance can negatively impact plant-pollinator interactions such as outcross pollination. We present a meta-analysis of 22 studies involving 27 plant species showing a significant reduction in the proportion of seeds outcrossed in response to anthropogenic habitat modifications. We discuss the evolutionary(More)
The mutation rate at 54 perfect (uninterrupted) dinucleotide microsatellite loci is estimated by direct genotyping of 96 Arabidopsis thaliana mutation accumulation lines. The estimated rate differs significantly among motif types with the highest rate for AT repeats (2.03 x 10(-3) per allele per generation), intermediate for CT (3.31 x 10(-4)), and lowest(More)
We describe a statistical framework for QTL mapping using bulk segregant analysis (BSA) based on high throughput, short-read sequencing. Our proposed approach is based on a smoothed version of the standard G statistic, and takes into account variation in allele frequency estimates due to sampling of segregants to form bulks as well as variation introduced(More)
Variation in the magnitude of inbreeding depression (ID) among families may have important consequences for mating system evolution. Experimental studies have shown that such variation is a common feature of natural plant populations. Unfortunately, the genetic and evolutionary significance of family level estimates remains obscure. Almost any kind of(More)
Adaptive modifications of heteromeric proteins may involve genetically based changes in single subunit polypeptides or parallel changes in multiple genes that encode distinct, interacting subunits. Here we investigate these possibilities by conducting a combined evolutionary and functional analysis of duplicated globin genes in natural populations of deer(More)
The lek paradox arises when choosy females deplete the genetic variance for male display traits from a population, yet substantial additive genetic variation (V(A)) in male traits persists. Thus, the lek paradox can be more generally stated as one of the most fundamental evolutionary questions: What maintains genetic variation in natural populations? One(More)
Within-patient HIV populations evolve rapidly because of a high mutation rate, short generation time, and strong positive selection pressures. Previous studies have identified "consistent patterns" of viral sequence evolution. Just before HIV infection progresses to AIDS, evolution seems to slow markedly, and the genetic diversity of the viral population(More)
Epistasis contributes significantly to intrapopulation variation in floral morphology, development time, and male fitness components of Mimulus guttatus. This is demonstrated with a replicated line-cross experiment involving slightly over 7000 plants. The line-cross methodology is based on estimates for means. It thus has greater power than the variance(More)
The additive genetic variance, V(A), is frequently used as a measure of evolutionary potential in natural plant populations. Many plants inbreed to some extent; a notable observation given that random mating is essential to the model that predicts evolutionary change from V(A). With inbreeding, V(A) is not the only relevant component of genetic variation.(More)
Unconditionally deleterious mutations could be an important source of variation in quantitative traits. Deleterious mutations should be rare (segregating at low frequency in the population) and at least partially recessive. In this paper, I suggest that the contribution of rare, partially recessive alleles to quantitative trait variation can be assessed by(More)