John J. Reho

Learn More
Microcirculatory dysfunction may cause tissue malperfusion and progression to organ failure in the later stages of sepsis, but the role of smooth muscle contractile dysfunction is uncertain. Mice were given intraperitoneal LPS, and mesenteric arteries were harvested at 6-h intervals for analyses of gene expression and contractile function by wire myography.(More)
Parasympathetic activity is often reduced in hypertension and can elicit anti-inflammatory mechanisms. Thus we hypothesized that chronic vagal nerve stimulation (VNS) may alleviate cardiovascular end-organ damage in stroke-prone spontaneously hypertensive rats. Vagal nerve stimulators were implanted, a high-salt diet initiated, and the stimulators turned on(More)
We examined the effect of stress in the first 2 wk of life induced by brief periods of daily maternal separation on developmental programming of rat small resistance mesenteric arteries (MAs). In MAs of littermate controls, mRNAs encoding mediators of vasoconstriction, including the α1a-adrenergic receptor, smooth muscle myosin heavy chain, and CPI-17, the(More)
The concept of gene therapy is promising; however, the perceived risks and side effects associated with this technology have severely dampened the researchers' enthusiasm. Thus, the development of a nonviral gene vector without immunological effects and with high transfection efficiency is necessary. Currently, most nonviral vectors have failed to achieve(More)
Testosterone (T) and the sympathetic nervous system each contribute to the pathology of hypertension. Altered blood vessel reactivity is also associated with the pathology of high blood pressure. The purpose of this study was to examine the effects of T manipulation in the regulation of resistance-sized blood vessel reactivity. Adult spontaneously(More)
There is evidence for developmental origins of vascular dysfunction yet little understanding of maturation of vascular smooth muscle (VSM) of regional circulations. We measured maturational changes in expression of myosin phosphatase (MP) and the broader VSM gene program in relation to mesenteric small resistance artery (SRA) function. We then tested the(More)
Deep sequencing of RNA samples from rat small mesenteric arteries (MA) and aorta (AO) identified common and unique features of their gene programs. ~5% of mRNAs were quantitatively differentially expressed in MA versus AO. Unique transcriptional control in MA smooth muscle is suggested by the selective or enriched expression of transcription factors Nkx2-3,(More)
Each regional circulation has unique requirements for blood flow and thus unique mechanisms by which it is regulated. In this review we consider the role of smooth muscle contractile diversity in determining the unique properties of selected regional circulations and its potential influence on drug targeting in disease. Functionally smooth muscle diversity(More)
BACKGROUND The etiology of preeclampsia remains unclear. Animal modeling of preeclampsia has been useful; however, no model to date represents episodic changes in uteroplacental blood flow that may occur in preeclampsia. OBJECTIVE To develop a gravid rat model characterized by episodic reductions in uteroplacental blood flow. METHOD Pregnant Sprague(More)
Diversity of smooth muscle within the vascular system is generated by alternative splicing of exons, yet there is limited understanding of its timing or control mechanisms. We examined splicing of myosin phosphatase regulatory subunit (Mypt1) exon 24 (E24) in relation to smooth muscle myosin heavy chain (Smmhc) and smoothelin (Smtn) alternative exons (Smmhc(More)