John J. Lannutti

Learn More
As the potential range of stem cell applications in tissue engineering continues to grow, the appropriate scaffolding choice is necessary to create tightly defined artificial microenvironments for each target organ. These microenvironments determine stem cell fate via control over differentiation. In this study we examined the specific effects of scaffold(More)
Bone cells and their precursors are sensitive to changes in their biomechanical environment. The importance of mechanical stimuli has been observed in bone homeostasis and osteogenesis, but the mechanisms responsible for osteogenic induction in response to mechanical signals are poorly understood. We hypothesized that compressive forces could exert an(More)
A mechanistic understanding of adipose tissue differentiation is critical for the treatment and prevention of obesity and type 2 diabetes. Conventional in vitro models of adipogenesis are preadipocytes or freshly isolated adipocytes grown in two-dimensional (2D) cultures. Optimal results using in vitro tissue culture models can be expected only when(More)
Glioblastoma multiforme (GBM) tumors are one of the most deadly forms of human cancer and despite improved treatments, median survival time for the majority of patients is a dismal 12-15 months. A hallmark of these aggressive tumors is their unique ability to diffusively infiltrate normal brain tissue. To understand this behavior and successfully target the(More)
Hydroxyapatite (HA)-reinforced polymers have been proposed as a method of improving the biological properties of bone cements and implant materials. For example, bone cements based on polymethylmethacrylate (PMMA) have long been used to secure orthopedic implants to the skeleton. This composite could also be used as a polished coating on other materials or(More)
Glioblastoma multiforme (GBM), one of the deadliest forms of human cancer, is characterized by its high infiltration capacity, partially regulated by the neural extracellular matrix (ECM). A major limitation in developing effective treatments is the lack of in vitro models that mimic features of GBM migration highways. Ideally, these models would permit(More)
Surface topography is believed to be a factor affecting cellular morphology, proliferation, and differentiation. The effect of surface roughness in the micron to supramicron range has been investigated previously. In the current study, the influence of nanoscale surface roughness was examined in terms of its effects on morphology, cytoskeleton expression,(More)
Biomimetic polymer nanofibers integrate sensing capabilities creating utility across many biological and biomedical applications. We created fibers consisting of either a poly(ether sulfone) (PES) or a polysulfone (PSU) core coated by a biocompatible polycaprolactone (PCL) shell to facilitate cell attachment. Oxygen sensitive luminescent probes Pt(II)(More)
Damage to hard bearing surfaces of total joint replacement components typically includes both thin discrete scratches and broader areas of more diffuse scraping. Traditional surface metrology parameters such as average roughness (R a) or peak asperity height (R p) are not well suited to quantifying those counterface damage features in a manner allowing(More)
Retrieval analysis of total joint arthroplasty components has primarily focused on assessing wear or other damage to polyethylene components. As damage to the opposing bearing surface can accelerate polyethylene wear and damage, and especially with the use of hard-on-hard articulations, retrieval analysis benefits from incorporating evaluation of hard(More)