Learn More
We develop an objective, noninvasive method for determining the frequency selectivity of cochlear tuning at low and moderate sound levels. Applicable in humans at frequencies of 1 kHz and above, the method is based on the measurement of stimulus-frequency otoacoustic emissions and, unlike previous noninvasive physiological methods, does not depend on the(More)
This review covers the basic anatomy and physiology of the olivocochlear reflexes and the use of otoacoustic emissions (OAEs) in humans to monitor the effects of one group, the medial olivocochlear (MOC) efferents. MOC fibers synapse on outer hair cells (OHCs), and activation of these fibers inhibits basilar membrane responses to low-level sounds. This(More)
This paper tests and applies a key prediction of the theory of coherent reflection filtering for the generation of reflection-source otoacoustic emissions. The theory predicts that reflection-source-emission group delay is determined by the group delay of the basilar-membrane (BM) transfer function at its peak. This prediction is tested over a seven-octave(More)
PURPOSE OF REVIEW This review covers topics relevant to olivocochlear-efferent anatomy and function for which there are new findings in papers from 2009 to early 2010. RECENT FINDINGS Work within the review period has increased our understanding of medial olivocochlear (MOC) mechanisms in outer hair cells, MOC-reflex tuning, MOC effects on distortion(More)
Otoacoustic emissions (OAEs) are useful for studying medial olivocochlear (MOC) efferents, but several unresolved methodological issues cloud the interpretation of the data they produce. Most efferent assays use a "probe stimulus" to produce an OAE and an "elicitor stimulus" to evoke efferent activity and thereby change the OAE. However, little attention(More)
Animal studies have led to the view that the acoustic medial olivocochlear (MOC) efferent reflex provides sharply tuned frequency-specific feedback that inhibits cochlear amplification. To determine if MOC activation is indeed narrow band, we measured the MOC effects in humans elicited by 60-dB sound pressure level (SPL) contralateral, ipsilateral, and(More)
Although many properties of click responses can be accounted for by a single, frequency-dispersive traveling wave exciting a single, characteristic-frequency (CF) resonance, some properties, such as waxing and waning cannot. Joint time-frequency distributions (TFDs) were used to help understand click responses of cat single auditory-nerve (AN) fibers (CFs<4(More)
We analyze published auditory-nerve and otoacoustic measurements in chinchilla to test a network of hypothesized relationships between cochlear tuning, cochlear traveling-wave delay, and stimulus-frequency otoacoustic emissions (SFOAEs). We find that the physiological data generally corroborate the network of relationships, including predictions from filter(More)
The time-course of the human medial olivocochlear reflex (MOCR) was measured via its suppression of stimulus-frequency otoacoustic emissions (SFOAEs) in nine ears. MOCR effects were elicited by contralateral, ipsilateral or bilateral wideband acoustic stimulation. As a first approximation, MOCR effects increased like a saturating exponential with a time(More)
Functional magnetic resonance imaging (fMRI) of human auditory cortex has demonstrated a striking range of temporal waveshapes in responses to sound. Prolonged (30 s) low-rate (2/s) noise burst trains elicit "sustained" responses, whereas high-rate (35/s) trains elicit "phasic" responses with peaks just after train onset and offset. As a step toward(More)