Learn More
Alpha-band (8-14 Hz) oscillatory EEG activity was examined with high-density scalp electrical recording during the cue-stimulus interval of an endogenous spatial cueing paradigm. In different blocks, cued spatial locations (left or right) were in either the upper or lower visual field, and attended stimuli were either oriented Ts or moving dots. Distractor(More)
Integration of information from multiple senses is fundamental to perception and cognition, but when and where this is accomplished in the brain is not well understood. This study examined the timing and topography of cortical auditory-visual interactions using high-density event-related potentials (ERPs) during a simple reaction-time (RT) task. Visual and(More)
Human electrophysiological (EEG) studies have demonstrated the involvement of alpha band (8- to 14-Hz) oscillations in the anticipatory biasing of attention. In the context of visual spatial attention within bilateral stimulus arrays, alpha has exhibited greater amplitude over parietooccipital cortex contralateral to the hemifield required to be ignored,(More)
Multisensory interactions are observed in species from single-cell organisms to humans. Important early work was primarily carried out in the cat superior colliculus and a set of critical parameters for their occurrence were defined. Primary among these were temporal synchrony and spatial alignment of bisensory inputs. Here, we assessed whether spatial(More)
This study provides a time frame for the initial trajectory of activation flow along the dorsal and ventral visual processing streams and for the initial activation of prefrontal cortex in the human. We provide evidence that this widespread system of sensory, parietal, and prefrontal areas is activated in less than 30 ms, which is considerably shorter than(More)
Error-processing research has demonstrated that the brain uses a specialized neural network to detect errors during task performance but the brain regions necessary for conscious awareness of an error are poorly understood. In the present study we show that two well-known error-related event-related potential (ERP) components, the error-related negativity(More)
Because environmental information is often suboptimal, visual perception must frequently rely on the brain's reconstruction of contours absent from retinal images. Illusory contour (IC) stimuli have been used to investigate these "filling-in" processes. Intracranial recordings and neuroimaging studies show IC sensitivity in lower-tier area V2, and to a(More)
Using high-field (3 Tesla) functional magnetic resonance imaging (fMRI), we demonstrate that auditory and somatosensory inputs converge in a subregion of human auditory cortex along the superior temporal gyrus. Further, simultaneous stimulation in both sensory modalities resulted in activity exceeding that predicted by summing the responses to the(More)
We investigated the time-course and scalp topography of multisensory interactions between simultaneous auditory and somatosensory stimulation in humans. Event-related potentials (ERPs) were recorded from 64 scalp electrodes while subjects were presented with auditory-alone stimulation (1000-Hz tones), somatosensory-alone stimulation (median nerve electrical(More)
High-density eeg recordings revealed sensory specific modulation of anticipatory parieto-occipital approximately 10 Hz oscillatory activity when visually presented word cues instructed subjects in an intermodal selective attention paradigm. Cueing attention to the auditory features of imminent compound audio-visual stimuli resulted in significantly higher(More)