Learn More
Instability of (CTG) x (CAG) microsatellite trinucleotide repeat (TNR) sequences is responsible for more than a dozen neurological or neuromuscular diseases. TNR instability during DNA synthesis is thought to involve slipped-strand or hairpin structures in template or nascent DNA strands, although direct evidence for hairpin formation in human cells is(More)
BACKGROUND Angiomyolipomas are slow-growing tumours associated with constitutive activation of mammalian target of rapamycin (mTOR), and are common in patients with tuberous sclerosis complex and sporadic lymphangioleiomyomatosis. The insidious growth of these tumours predisposes patients to serious complications including retroperitoneal haemorrhage and(More)
Tuberous sclerosis complex (TSC) is an important cause of epilepsy and autism, as well as renal and pulmonary disease in adults and children. Affected individuals are subject to hamartomas in various organ systems which result from constitutive activation of the protein kinase mTOR (mammalian target of rapamycin). The clinical course, prognosis and(More)
The human DEK gene is frequently overexpressed and sometimes amplified in human cancer. Consistent with oncogenic functions, Dek knockout mice are partially resistant to chemically induced papilloma formation. Additionally, DEK knockdown in vitro sensitizes cancer cells to DNA damaging agents and induces cell death via p53-dependent and -independent(More)
Tuberous sclerosis complex is an autosomal dominant disorder that occurs owing to inactivating mutations in either TSC1 or TSC2. Tuberous sclerosis complex-related tumors in the brain, such as subependymal giant cell astrocytoma, and in the kidney, such as angiomyolipoma, can cause significant morbidity and mortality. Recently, randomized clinical trials(More)
Autosomal dominant polycystic kidney disease (ADPKD) affects over 500 000 Americans. Eighty-five percent of these patients have mutations in the PKD1 gene. The focal nature of cyst formation has recently been attributed to innate instability in the PKD1 gene. Intron 21 of this gene contains the largest polypurine. polypyrimidine tract (2.5 kb) identified to(More)
Mutations disrupting the function or production of C1 inhibitor cause the disease hereditary angioneurotic edema. Patient mutations identified an imperfect inverted repeat sequence that was postulated to play a mechanistic role in the mutations. To test this hypothesis, the inverted repeat was cloned into the chloramphenicol acetyltransferase gene in pBR325(More)
On March 10 to March 12, 2015, the National Institute of Neurological Disorders and Stroke and the Tuberous Sclerosis Alliance sponsored a workshop in Bethesda, Maryland, to assess progress and new opportunities for research in tuberous sclerosis complex with the goal of updating the 2003 Research Plan for Tuberous Sclerosis(More)