Learn More
A business incurs much higher charges when attempting to win new customers than to retain existing ones. As a result, much research has been invested into new ways of identifying those customers who have a high risk of churning. However customer retention efforts have also been costing organisations large amounts of resource. In response to these issues,(More)
Exploring the maximum spatial resolution achievable in far-field optical imaging, we show that applying solid immersion lenses (SIL) in stimulated emission depletion (STED) microscopy addresses single spins with a resolution down to 2.4 ± 0.3 nm and with a localization precision of 0.09 nm.
Diamond is a promising platform for sensing and quantum processing owing to the remarkable properties of the nitrogen-vacancy (NV) impurity. The electrons of the NV center, largely localized at the vacancy site, combine to form a spin triplet, which can be polarized with 532 nm laser light, even at room temperature. The NV's states are isolated from(More)
—The aim of this paper is to identify the most suitable model for churn prediction based on three different techniques. The paper identifies the variables that affect churn in reverence of customer complaints data and provides a comparative analysis of neural networks, regression trees and regression in their capabilities of predicting customer churn. I.(More)
—The aim of this paper is to identify the most suitable model for churn prediction based on three different techniques. The paper identifies the variables that affect churn in reverence of customer complaints data and provides a comparative analysis of neural networks, regression trees and regression in their capabilities of predicting customer churn. I.(More)
Diamond's nitrogen-vacancy (NV) centers show great promise in sensing applications and quantum computing due to their long electron spin coherence time and because they can be found, manipulated, and read out optically. An important step forward for diamond photonics would be connecting multiple diamond NVs together using optical waveguides. However, the(More)
  • 1