Learn More
Lithography can be performed with beams of neutral atoms in metastable excited states to pattern self-assembled monolayers (SAMs) of alkanethiolates on gold. An estimated exposure of a SAM of dodecanethiolate (DDT) to 15 to 20 metastable argon atoms per DDT molecule damaged the SAM sufficiently to allow penetration of an aqueous solution of ferricyanide to(More)
We report a new test of quantum electrodynamics (QED) for the w (1s2p(1)P(1)→1s(2)(1)S(0)) x-ray resonance line transition energy in heliumlike titanium. This measurement is one of few sensitive to two-electron QED contributions. Systematic errors such as Doppler shifts are minimized in our experiment by trapping and stripping Ti atoms in an electron beam(More)
Optical frequencies of the D lines of (6,7)Li were measured with a relative accuracy of 5 × 10⁻¹¹ using an optical comb synthesizer. Quantum interference in the laser induced fluorescence for the partially resolved D2 lines was found to produce polarization dependent shifts as large as 1 MHz. Our results resolve large discrepancies among previous(More)
Spectra of highly charged Kr ions, produced in an electron-beam ion trap (EBIT), have been recorded in a broad x-ray energy band (0.3 keV to 4 keV) with a microcalorimeter detector. Most of the spectral lines have been identified as transitions of B- to Al-like Kr. The transition energies have been determined with 0.2% uncertainty. A semi-empirical EBIT(More)
We have determined the wave number of the optical two-photon clock transition 6s[3/2](2)-6s'[1/2](0) in xenon by interferometrically comparing the wavelengths of the 6s[3/2](2)-6p'[1/2](1) (lambda = 450 nm) and 6s'[(1/2)] (0)-6p'([1/2]) (lambda = 764 nm) transitions with an iodine-stabilized 633-nm He-Ne laser. These measurements determine the frequency of(More)
We report a fully relativistic close-coupling calculation of the electron impact excitation of Ni xix to derive the 3C/3D line intensity ratio, with an uncertainty of 5%. Convergence of the calculation with respect to both channel coupling effects and the many interacting Rydberg series of resonances has been achieved. New measurements in an electron beam(More)
An EBIT can selectively create, in principle, any charge state of every naturally occurring element, has good control on atomic collision processes, and can produce nearly ideal conditions for the analysis of highly ionized plasmas of astrophysical importance. A microcalorimeter enables the broadband detection of X-ray emission with high energy resolution(More)
Atomic spectroscopy results from the electron beam ion trap at the National Institute of Standards and Technology have generally agreed with the predictions of theory extremely well. An interesting exception is our recent result on the helium isoelectronic sequence at Z = 22, which agrees instead with a meta-analysis of all prior measurements above Z = 15,(More)
We describe an optical system that we constructed to collect a large fraction of fluorescent light emitted isotropically from a cylindrical interaction region. While maintaining an overall detection efficiency of 9%, the system rejects, by more than 12 orders of magnitude, incident laser light along a single axis that intersects the interaction region. Such(More)
  • 1