Learn More
Speech contains patterns that can be altered by the mood of an individual. There is an increasing focus on automated and distributed methods to collect and monitor speech from large groups of patients suffering from mental health disorders. However, as the scope of these collections increases, the variability in the data also increases. This variability is(More)
Many paralinguistic tasks are closely related and thus representations learned in one domain can be leveraged for another. In this paper, we investigate how knowledge can be transferred between three paralinguistic tasks: speaker, emotion, and gender recognition. Further, we extend this problem to cross-dataset tasks, asking how knowledge captured in one(More)
Individuals with bipolar disorder typically exhibit changes in the acoustics of their speech. Mobile health systems seek to model these changes to automatically detect and correctly identify current states in an individual and to ultimately predict impending mood episodes. We have developed a program, PRIORI (Predicting Individual Outcomes for Rapid(More)
Automatic emotion recognition from audio-visual data is a topic that has been broadly explored using data captured in the laboratory. However, these data are not necessarily representative of how emotion is manifested in the real-world. In this paper, we describe our system for the 2016 Emotion Recognition in the Wild challenge. We use the Acted Facial(More)
  • 1