Learn More
Long-term depression (LTD) in the CNS has been the subject of intense investigation as a process that may be involved in learning and memory and in various pathological conditions. Several mechanistically distinct forms of this type of synaptic plasticity have been identified and their molecular mechanisms are starting to be unravelled. Most studies have(More)
The present study investigated the roles of the perirhinal cortex, medial prefrontal cortex, and intrahemispheric interactions between them in recognition and temporal order memory for objects. Experiment 1 assessed the effects of bilateral microinfusions of the sodium channel blocker lidocaine into either the anterior perirhinal or medial prefrontal cortex(More)
The present study describes two novel tasks relying on spontaneous patterns of exploration in a radial-arm maze that can be used to assess spatial recognition memory and spatial temporal order memory (i.e. memory for the order in which places have been visited) in the rat. In the recognition memory task, rats were permitted to freely explore two arms in the(More)
Acute stress impairs memory retrieval and facilitates the induction of long-term depression (LTD) in the hippocampal CA1 region of the adult rodent brain. However, whether such alterations in synaptic plasticity cause the behavioral effects of stress is not known. Here, we report that two selective inhibitors of the induction or expression of(More)
The present review focuses on recent findings from our laboratory showing that there are major differences in the influence exerted by the central (CeN) and basolateral (BLA) nuclei of the amygdala on dopamine (DA) efflux in the nucleus accumbens (NAc) of the rat. Based on these data, we propose that the CeN maintains control, via an indirect pathway, of(More)
Synaptic plasticity has often been argued to play an important role in learning and memory. The discovery of long-term potentiation (LTP) and long-term depression (LTD), the two most widely cited cellular models of synaptic plasticity, significantly spurred research in this field. Although correlative evidence suggesting a role for synaptic changes such as(More)
Infection during pregnancy (i.e., prenatal infection) increases the risk of psychiatric illnesses such as schizophrenia and autism in the adult offspring. The present experiments examined the effects of prenatal immune challenge on behavior in three paradigms relevant to these disorders: prepulse inhibition (PPI) of the acoustic startle response, locomotor(More)
Abnormal activity in corticolimbic circuits during development may be a predisposing factor for schizophrenia. Permanent or temporary lesions of limbic structures such as the ventral hippocampus and basolateral amygdala in rats on postnatal day (PND) 7 result in functional changes similar to some behavioural and cognitive signs of schizophrenia. The present(More)
Research suggests that maternal immune activation (MIA) during pregnancy increases the risk of neurodevelopmental disorders including schizophrenia and autism in the offspring. Current theories suggest that inflammatory mediators including cytokines and chemokines may underlie the increased risk of these disorders in humans. For example, elevated maternal(More)
Dopaminergic neurotransmission in the nucleus accumbens (NAc) and neural processes in the basolateral (BLA) and central (CeN) amygdala nuclei are implicated in associative reward learning. Given their direct and indirect connections with the NAc and ventral tegmental area (VTA), both the BLA and CeN may regulate the mesoaccumbens dopamine (DA) system in(More)