Learn More
We present new ideas for evolving black holes through a computational grid without excision, which enable accurate and stable evolutions of binary black hole systems with the accurate determination of gravitational waveforms directly from the wave zone region. Rather than excising the black hole interiors, our approach follows the "puncture" treatment of(More)
Recent developments in numerical relativity have made it possible to follow reliably the coalescence of two black holes from near the innermost stable circular orbit to final ringdown. This opens up a wide variety of exciting astrophysical applications of these simulations. Chief among these is the net kick received when two unequal mass or spinning black(More)
General relativity predicts the gravitational wave signatures of coalescing binary black holes. Explicit waveform predictions for such systems, required for optimal analysis of observational data, have so far been achieved primarily using the post-Newtonian (PN) approximation. The quality of this treatment is unclear, however, for the important(More)
Several groups have recently computed the gravitational radiation recoil produced by the merger of two spinning black holes. The results suggest that spin can be the dominant contributor to the kick, with reported recoil speeds of hundreds to even thousands of kilometers per second. The parameter space of spin kicks is large, however, and it is ultimately(More)
We review the tests of general relativity that will become possible with space-based gravitational-wave detectors operating in the ∼ 10-5 - 1 Hz low-frequency band. The fundamental aspects of gravitation that can be tested include the presence of additional gravitational fields other than the metric; the number and tensorial nature of gravitational-wave(More)
The 2008 NRDA conference introduced the Numerical INJection Analysis project (NINJA), a new collaborative effort between the numerical relativity community and the data analysis community. NINJA focuses on modeling and searching for gravitational wave signatures from the coalescence of binary system of compact objects. We review the scope of this(More)
The Mock LISA Data Challenges are a programme to demonstrate and encourage the development of LISA data-analysis capabilities, tools and techniques. At the time of this workshop, three rounds of challenges had been completed, and the next was about to start. In this article we provide a critical analysis of entries to the latest completed round, Challenge(More)
Recent numerical relativistic results demonstrate that the merger of comparable-mass spinning black holes has a maximum " recoil kick " of up to ∼ 4000 km s −1. However the scaling of these recoil velocities with mass ratio is poorly understood. We present new runs showing that the maximum possible kick parallel to the orbital axis does not scale as ∼ η 2(More)