John F. Wootton

Learn More
1. Using intracellular recording and voltage-clamp techniques, we examined the biophysical properties of a Ca(2+)-activated slow inward current and its physiological role in plateau potential generation in the dorsal gastric (DG) motor neuron of the stomatogastric ganglion in the crab, Cancer borealis. 2. As shown in the accompanying paper, a brief puff of(More)
1. Voltage-gated Ca2+ currents (ICa) and Ca(2+)-activated Cl- currents (ICl(Ca)) were recorded from cultured rat dorsal root ganglion (DRG) neurones using the whole-cell configuration of the patch clamp technique. Intracellular photorelease of Ca2+ by flash photolysis of DM-nitrophen elicited transient inward currents only in those cells which possessed(More)
Low voltage-activated T-type Ca2+ channel currents were recorded from cultured rat dorsal root ganglion neurons using the whole-cell clamp technique with Ba2+ as the charge carrier. The T-type Ca2+ channel current was identified by its low threshold of activation (Vc -50 to -20 mV from VH - 90 mV), its kinetics of inactivation and its sensitivity to NiCl2(More)
The whole cell patch clamp technique has been used to record Ca(2+)-activated cation and chloride conductances evoked by release of Ca2+ from intracellular stores of cultured neonatal dorsal root ganglion neurones. The aim of this study was to investigate metabotropic glutamate receptor (mGluR) mechanisms and evaluate a possible role for cyclic ADP-ribose(More)
The influence of guanine nucleotide analogues on calcium channel currents in cultured rat dorsal root ganglion neurones has been studied using a technique in which the rate of diffusion of the analogues to their site of action is by-passed by photochemical release of the analogues within the neurones. The 1(2-nitrophenyl)ethyl P3-ester derivatives of(More)
Cultured dorsal root ganglion neurons were voltage clamped at -90 mV to study the effects of intracellular application of nicotinamide adenine dinucleotide (betaNAD+), intracellular flash photolysis of caged 3',5'-cyclic guanosine monophosphate (cGMP), and metabotropic glutamate receptor activation. The activation of metabotropic glutamate receptors evoked(More)
Whole cell inward currents activated by intracellular photorelease of cyclic guanosine monophosphate (cGMP) were investigated in cultured dorsal root ganglion (DRG) neurones. The actions of two distinct types of caged cGMP (NPE-caged cGMP and a highly water-soluble caged cGMP) were compared. Rapidly activating inward currents were evoked by cGMP in a(More)
The influence of 1-D-myo-inositol 1,4,5-trisphosphate (InsP3) breakdown by InsP3 5-phosphatase in determining the time course of Ca2+ release from intracellular stores was investigated with flash photolytic release of a stable InsP3 derivative, 5-thio-InsP3, from a photolabile caged precursor. The potency and Ca(2+)-releasing properties of the biologically(More)
2/-dependent currents in dor-and are defined as such by their sensitivity to the plant alka-sal root ganglion neurons by metabotropic glutamate receptors and loid ryanodine. Since their initial characterization in skeletal cyclic ADP-ribose precursors. and cardiac muscle, RyRs are now also thought to play a 1997. Cultured dorsal root ganglion neurons were(More)
1. The whole cell recording technique was used to study high voltage-activated Ca2+ currents and Ca(2+)-activated Cl- tail currents from cultured neonatal dorsal root ganglion neurones of the rat which were metabolically stressed. The neurones were metabolically stressed with 2-deoxy-D-glucose (5 mM) for 30 min to 3 h. The aim of the project was to examine(More)
  • 1