Learn More
MOTIVATION Long terminal repeat (LTR) retrotransposons constitute a substantial fraction of most eukaryotic genomes and are believed to have a significant impact on genome structure and function. Conventional methods used to search for LTR retrotransposons in genome databases are labor intensive. We present an efficient, reliable and automated method to(More)
BACKGROUND Retrotransposons have been shown to contribute to evolution of both structure and regulation of protein coding genes. It has been postulated that the primary mechanism by which retrotransposons contribute to structural gene evolution is through insertion into an intron or a gene flanking region, and subsequent incorporation into an exon. (More)
Increasing evidence supports the existence of a subpopulation of cancer cells capable of self-renewal and differentiation into diverse cell lineages. These cancer stem-like or cancer-initiating cells (CICs) also demonstrate resistance to chemo- and radiotherapy and may function as a primary source of cancer recurrence. We report here on the isolation and in(More)
BACKGROUND The majority of ovarian cancer biomarker discovery efforts focus on the identification of proteins that can improve the predictive power of presently available diagnostic tests. We here show that metabolomics, the study of metabolic changes in biological systems, can also provide characteristic small molecule fingerprints related to this disease.(More)
BACKGROUND LTR Retrotransposons transpose through reverse transcription of an RNA intermediate and are ubiquitous components of all eukaryotic genomes thus far examined. Plant genomes, in particular, have been found to be comprised of a remarkably high number of LTR retrotransposons. There is a significant body of direct and indirect evidence that LTR(More)
We report the results of an analysis of naturally occurring cis-regulatory variation within and between two families of the copia Drosophila long terminal repeat (LTR) retrotransposon. The copia 5' LTR and adjacent untranslated leader region (ULR) consists of a number of well-characterized sequence motifs which play a role in regulating expression of the(More)
BACKGROUND Ovarian cancer diagnosis is problematic because the disease is typically asymptomatic, especially at the early stages of progression and/or recurrence. We report here the integration of a new mass spectrometric technology with a novel support vector machine computational method for use in cancer diagnostics, and describe the application of the(More)
BACKGROUND Accumulating evidence suggests that somatic stem cells undergo mutagenic transformation into cancer initiating cells. The serous subtype of ovarian adenocarcinoma in humans has been hypothesized to arise from at least two possible classes of progenitor cells: the ovarian surface epithelia (OSE) and/or an as yet undefined class of progenitor cells(More)
The metastatic potential of cells is an important parameter in the design of optimal strategies for the personalized treatment of cancer. Using atomic force microscopy (AFM), we show, consistent with previous studies conducted in other types of epithelial cancer, that ovarian cancer cells are generally softer and display lower intrinsic variability in cell(More)