Learn More
MOTIVATION Long terminal repeat (LTR) retrotransposons constitute a substantial fraction of most eukaryotic genomes and are believed to have a significant impact on genome structure and function. Conventional methods used to search for LTR retrotransposons in genome databases are labor intensive. We present an efficient, reliable and automated method to(More)
BACKGROUND Long terminal repeat (LTR) retrotransposons constitute a major fraction of the genomes of higher plants. For example, retrotransposons comprise more than 50% of the maize genome and more than 90% of the wheat genome. LTR retrotransposons are believed to have contributed significantly to the evolution of genome structure and function. The genome(More)
The current trends in high performance integrated circuits are towards faster and more powerful circuits in the giga-hertz range and even further. As the more complex Integrated Circuits (IC) such as microprocessors have been entering the giga-hertz operating frequency range, various speed related roadblocks have become increasingly difficult to overcome.(More)
BACKGROUND Long terminal repeat (LTR) retrotransposons make up a large fraction of the typical mammalian genome. They comprise about 8% of the human genome and approximately 10% of the mouse genome. On account of their abundance, LTR retrotransposons are believed to hold major significance for genome structure and function. Recent advances in genome(More)
MicroRNAs (miRNAs) are a class of small RNAs that have been linked to a number of diseases including cancer. The potential application of miRNAs in the diagnostics and therapeutics of ovarian and other cancers is an area of intense interest. A current challenge is the inability to accurately predict the functional consequences of exogenous modulations in(More)
BACKGROUND The majority of human non-protein-coding DNA is made up of repetitive sequences, mainly transposable elements (TEs). It is becoming increasingly apparent that many of these repetitive DNA sequence elements encode gene regulatory functions. This fact has important evolutionary implications, since repetitive DNA is the most dynamic part of the(More)
Wide-spread hypomethylation of CpG dinucleotides is characteristic of many cancers. Retrotransposons have been identified as potential targets of hypomethylation during cellular transformation. We report the results of an preliminary examination of the methylation status of CpG dinucleotides associated with the L1 and HERV-W retrotransposons in benign and(More)
Increasing evidence supports the existence of a subpopulation of cancer cells capable of self-renewal and differentiation into diverse cell lineages. These cancer stem-like or cancer-initiating cells (CICs) also demonstrate resistance to chemo- and radiotherapy and may function as a primary source of cancer recurrence. We report here on the isolation and in(More)