Learn More
BACKGROUND Structural studies of fixed cells have revealed that interphase chromosomes are highly organized into specific arrangements in the nucleus, and have led to a picture of the nucleus as a static structure with immobile chromosomes held in fixed positions, an impression apparently confirmed by recent photobleaching studies. Functional studies of(More)
BACKGROUND Mitosis involves the interaction of many different components, including chromatin, microtubules, and motor proteins. Dissecting the mechanics of mitosis requires methods of studying not just each component in isolation, but also the entire ensemble of components in its full complexity in genetically tractable model organisms. RESULTS We have(More)
Recent experiments on unzipping of RNA helix-loop structures by force have shown that approximately 40-base molecules can undergo kinetic transitions between two well-defined "open" and "closed" states, on a timescale approximately 1 sec [Liphardt et al., Science 297, 733-737 (2001)]. Using a simple dynamical model, we show that these phenomena result from(More)
Polymers tied together by constraints exhibit an internal pressure; this idea is used to analyze physical properties of the bottle-brush-like chromosomes of meiotic prophase that consist of polymer-like flexible chromatin loops, attached to a central axis. Using a minimal number of experimental parameters, semiquantitative predictions are made for the(More)
The structure of mitotic chromosomes in cultured newt lung cells was investigated by a quantitative study of their deformability, using micropipettes. Metaphase chromosomes are highly extensible objects that return to their native shape after being stretched up to 10 times their normal length. Larger deformations of 10 to 100 times irreversibly and(More)
The multistep kinetics through which DNA-binding proteins bind their targets are heavily studied, but relatively little attention has been paid to proteins leaving the double helix. Using single-DNA stretching and fluorescence detection, we find that sequence-neutral DNA-binding proteins Fis, HU and NHP6A readily exchange with themselves and with each(More)
The chemotaxis signalling network in Escherichia coli that controls the locomotion of bacteria is a classic model system for signal transduction. This pathway modulates the behaviour of flagellar motors to propel bacteria towards sources of chemical attractants. Although this system relaxes to a steady state in response to environmental changes, the(More)
The elastic response of flexible polymers made of elements which can be either folded or unfolded, having different lengths in these two states, is discussed. These situations are common for biopolymers as a result of folding interactions intrinsic to the monomers, or as a result of binding of other smaller molecules along the polymer length. Using simple(More)
While non-specific DNA plays a role in target localization for many recombinases, transcription factors and restriction enzymes, the importance of non-specific DNA interactions for transposases has not been investigated. Here, we discuss non-specific DNA-Tn5 Transposase (Tnp) interactions and suggest how they stabilize the Tnp and modulate Tnp localization(More)