Learn More
The human superior temporal cortex plays a critical role in hearing, speech, and language, yet its functional organization is poorly understood. Evoked potentials (EPs) to auditory click-train stimulation presented binaurally were recorded chronically from penetrating electrodes implanted in Heschl's gyrus (HG), from pial-surface electrodes placed on the(More)
The capacity of auditory cortex on Heschl's gyrus (HG) to encode repetitive transients was studied in human patients undergoing surgical evaluation for medically intractable epilepsy. Multicontact depth electrodes were chronically implanted in gray matter of HG. Bilaterally presented stimuli were click trains varying in rate from 4 to 200 Hz. Averaged(More)
Speech comprehension relies on temporal cues contained in the speech envelope, and the auditory cortex has been implicated as playing a critical role in encoding this temporal information. We investigated auditory cortical responses to speech stimuli in subjects undergoing invasive electrophysiological monitoring for pharmacologically refractory epilepsy.(More)
Transient broad-band stimuli that mimic in their spectrum and time waveform sounds arriving from a speaker in free space were delivered to the tympanic membranes of barbiturized cats via sealed and calibrated earphones. The full array of such signals constitutes a virtual acoustic space (VAS). The extra-cellular response to a single stimulus at each VAS(More)
1. The interaural-phase-difference (IPD) sensitivity of single neurons in the primary auditory (AI) cortex of the anesthetized cat was studied at stimulus frequencies ranging from 120 to 2,500 Hz. Best frequencies of the 43 AI cells sensitive to IPD ranged from 190 to 2,400 Hz. 2. A static IPD was produced when a pair of low-frequency tone bursts, differing(More)
Two transient sounds, considered as a conditioner followed by a probe, were delivered successively from the same or different direction in virtual acoustic space (VAS) while recording from single neurons in primary auditory cortex (AI) of cats under general anesthesia. Typically, the response to the probe sound was progressively suppressed as the interval(More)