John F. Bowyer

Learn More
The depletion of striatal dopamine (DA) that can occur after methamphetamine (METH) administration has been linked to METH-induced hyperthermia. The relationship between METH-induced hyperthermia, neurotoxicity (striatal DA depletions) and compounds that protect against METH neurotoxicity was further investigated in this study. Typically, rats exposed to(More)
The effects of developmental age on (+/-)-3,4-methylenedioxymethamphetamine (MDMA)-induced reductions in 5-hydroxytryptamine (5-HT) content and 5-HT reuptake sites were investigated in conjunction with the effects of developmental age on MDMA-induced thermoregulatory responses. MDMA was administered to rats at postnatal days (PND) 10, 40 and 70 in a range(More)
Recently we have reported that methamphetamine (METH) neurotoxicity in rats depends on the environmental temperature. Here, we evaluate whether a cold environment (4 degrees C) or drugs which chloride and glutamate ion channel function block METH neurotoxicity in mice. Adult male CD mice received METH i.p. (4 x 10 mg/kg METH at 23 degrees C along with(More)
Histological examination of brain after a single high (40 mg/kg) dose of D-methamphetamine (METH) was used to determine the relationships between blood-brain barrier (BBB) disruption, hyperthermia, intense seizure activity, and extensive degeneration that this exposure often produces. In very hyperthermic mice (body temperatures > 40.5 degrees C) exhibiting(More)
An objective of many functional genomics studies is to estimate treatment-induced changes in gene expression. cDNA arrays interrogate each tissue sample for the levels of mRNA for hundreds to tens of thousands of genes, and the use of this technology leads to a multitude of treatment contrasts. By-gene hypotheses tests evaluate the evidence supporting no(More)
When male rats were injected four times (once every 2 hr) with 5 mg/kg methamphetamine (METH) at an environmental temperature of 23 degrees C, transient changes occurred in the levels of striatal dopamine (DA) and the regulation of striatal DA release. Striatal DA levels were minimally affected 1 day after METH treatment, but 3 days after METH treatment,(More)
Extracellular levels of d-amphetamine (AMPH) in caudate/putamen were determined using microdialysis and HPLC quantitation after s.c. doses that produced increased motor activity (1 mg/kg), stereotypic behavior (2.5 mg/kg) or dopamine depletion in the caudate/putamen (4 x 5 mg/kg). In 6-mo-old rats exposed to neurotoxic doses of AMPH sulfate (4 x 5 mg/kg in(More)
Plasma levels of parent compounds and metabolites were determined in adult rhesus monkeys after doses of either 5mg/kg d-fenfluramine (FEN) or 10mg/kg d-3, 4-methylenedioxymethamphetamine (MDMA) i.m. twice daily for four consecutive days. These treatment regimens have been previously shown to produce long-term serotonin (5-HT) depletions. Peak plasma levels(More)
Four injections (intraperitoneal) of 3 mg/kg amphetamine (2 hr apart) produced pronounced hyperthermia and sustained decreases in dopamine levels and tyrosine hydroxylase (TH) protein levels in the striatum of 15-month-old male rats. A partial recovery of striatal dopamine levels was observed at 4 months after amphetamine. In contrast, TH mRNA and TH(More)
Amphetamine, 10(-7) M or greater, evoked the release of [3H]dopamine ([3H]DA) and inhibited subsequent K+-evoked [3H]DA release from striatal synaptosomes superfused at a flow rate (1 ml/min) that prevented reuptake. Amphetamine inhibited the K+-evoked release of [3H]DA to a lesser extent in striatal slices or in synaptosomes superfused at a flow rate (0.35(More)