Learn More
The performance of a set of fifteen global climate models used in the Coupled Model Intercomparison Project is evaluated for Alaska and Greenland, and compared with the performance over broader pan-Arctic and Northern Hemisphere extratropical domains. Root-mean-square errors relative to the 1958-2000 climatology of the ERA-40 reanalysis are summed over the(More)
The sea ice simulations by the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4) models for the climate of the twentieth century and for global warming scenarios have been synthesized. A large number of model simulations realistically captured the climatological annual mean, seasonal cycle, and temporal trends of sea ice area(More)
Fire is the keystone disturbance in the Alaskan boreal forest and is highly influenced by summer weather patterns. Records from the last 53 years reveal high variability in the annual area burned in Alaska and corresponding high variability in weather occurring at multiple spatial and temporal scales. Here we use multiple linear regression (MLR) to(More)
The average air temperature at the Earth's surface has increased by 0.06 degrees C per decade during the 20th century, and by 0.19 degrees C per decade from 1979 to 1998. Climate models generally predict amplified warming in polar regions, as observed in Antarctica's peninsula region over the second half of the 20th century. Although previous reports(More)
[1] Recent record lows of Arctic summer sea ice extent are found to be triggered by the Arctic atmospheric Dipole Anomaly (DA) pattern. This local, second – leading mode of sea – level pressure (SLP) anomaly in the Arctic produced a strong meridional wind anomaly that drove more sea ice out of the Arctic Ocean from the western to the eastern Arctic also(More)
The Arctic is a key part of the global climate system because the net positive energy input to the tropics must ultimately be resolved through substantial energy losses in high-latitude regions. The Arctic influences the global climate system through both positive and negative feedbacks that involve physical, ecological, and human systems of the Arctic. The(More)
Forty years (1958–97) of reanalysis products and corresponding sea ice concentration data are used to document Arctic sea ice variability and its association with surface air temperature (SAT) and sea level pressure (SLP) throughout the Northern Hemisphere extratropics. The dominant mode of winter (January–March) sea ice variability exhibits out-of-phase(More)
Manifold changes in the freshwater cycle of high-latitude lands and oceans have been reported in the past few years. A synthesis of these changes in freshwater sources and in ocean freshwater storage illustrates the complementary and synoptic temporal pattern and magnitude of these changes over the past 50 years. Increasing river discharge anomalies and(More)
The influence of realistic Arctic sea ice anomalies on the atmosphere during winter is investigated with version 3.6 of the Community Climate Model (CCM3.6). Model experiments are performed for the winters with the most (1982/83) and least (1995/96) Arctic ice coverage during 1979–99, when ice concentration estimates were available from satellites. The(More)
Although much remains to be learned about the Arctic and its component processes, many of the most urgent scientific, engineering, and social questions can only be approached through a broader system perspective. Here, we address interactions between components of the Arctic system and assess feedbacks and the extent to which feedbacks (1) are now underway(More)