Learn More
Mitochondrial DNA control region sequences were analyzed from 162 wolves at 27 localities worldwide and from 140 domestic dogs representing 67 breeds. Sequences from both dogs and wolves showed considerable diversity and supported the hypothesis that wolves were the ancestors of dogs. Most dog sequences belonged to a divergent monophyletic clade sharing no(More)
The results presented here provide the first single-cell genetic assay for Tay-Sachs disease based on real-time PCR. Individual lymphoblasts were lysed with an optimized lysis buffer and assayed using one pair of primers that amplifies both the wild type and 1278 + TATC Tay-Sachs alleles. The resulting amplicons were detected in real time with two molecular(More)
Conventional asymmetric PCR is inefficient and difficult to optimize because limiting the concentration of one primer lowers its melting temperature below the reaction annealing temperature. Linear-After-The-Exponential (LATE)-PCR describes a new paradigm for primer design that renders assays as efficient as symmetric PCR assays, regardless of primer ratio.(More)
Traditional asymmetric PCR uses conventional PCR primers at unequal concentrations to generate single-stranded DNA. This method, however, is difficult to optimize, often inefficient, and tends to promote nonspecific amplification. An alternative approach, Linear-After-The-Exponential (LATE)-PCR, solves these problems by using primer pairs deliberately(More)
We present a method for rapid and accurate identification of the normal and DeltaF508 alleles of the cystic fibrosis (CF) gene in single human cells that utilizes LATE (linear after the exponential)-PCR, a newly invented form of asymmetric PCR. Detection of the single-stranded amplicon is carried out in real time, using allele-specific molecular beacons.(More)
Pyrosequencing is a highly effective method for quantitatively genotyping short genetic sequences, but it currently is hampered by a labor-intensive sample preparation process designed to isolate single-stranded DNA from double-stranded products generated by conventional PCR. Here linear-after-the-exponential (LATE)-PCR is introduced as an efficient and(More)
Life abounds with genetic variations writ in sequences that are often only a few hundred nucleotides long. Rapid detection of these variations for identification of genetic diseases, pathogens and organisms has become the mainstay of molecular science and medicine. This report describes a new, highly informative closed-tube polymerase chain reaction (PCR)(More)
BACKGROUND In conventional PCR, total amplicon yield becomes independent of starting template number as amplification reaches plateau and varies significantly among replicate reactions. This paper describes a strategy for reconfiguring PCR so that the signal intensity of a single fluorescent detection probe after PCR thermal cycling reflects genomic(More)
This protocol describes the design and execution of monoplex and multiplex linear-after-the-exponential (LATE)-PCR assays using a novel reagent, PrimeSafe, that suppresses all forms of mispriming. LATE-PCR is an advanced form of asymmetric amplification that uses a limiting primer and an excess primer for efficient exponential amplification of(More)
We have recently described a Dilute-'N'-Go protocol that greatly simplifies preparation and sequencing of both strands of an amplicon generated using linear-after-the-exponential (LATE)-PCR, an advanced form of asymmetric PCR . The same protocol can also be used to sequence all limiting primer strands in a multiplex LATE-PCR, by adding back each of the(More)