Learn More
BACKGROUND The complex and characteristic structures of dendrites are a crucial part of the neuronal architecture that underlies brain function, and as such, their development has been a focal point of recent research. It is generally believed that dendritic development is controlled by a combination of endogenous genetic mechanisms and activity-dependent(More)
The study of dendritic development in CNS neurons has been hampered by a lack of complex dendritic structures that can be studied in a tractable genetic system. In an effort to develop such a system, we recently characterized the highly complex dendrites of the vertical system (VS) neurons in the Drosophila visual system. Using VS neurons as a model system,(More)
Neurons undergo extensive morphogenesis during development. To systematically identify genes important for different aspects of neuronal morphogenesis, we performed a genetic screen using the MARCM system in the mushroom body (MB) neurons of the Drosophila brain. Mutations on the right arm of chromosome 2 (which contains approximately 20% of the Drosophila(More)
Seasonal patterns of dissolved inorganic nitrogen and inorganic carbon uptake by the sublittoral epilithic periphyton community in N-deficient, oligotrophic Lake Tahoe were examined. The biomass dominants of this community, N,-fixing blue-green algae (e.g. Calothrix, Tolypothrix, and Nostoc) were persistent and retained their nitrogenase activity throughout(More)
The Forest Service of the U.S. Department of Agriculture is dedicated to the principle of multiple use management of the Nation's forest resources for sustained yields of wood, water, forage, wildlife, and recreation. Through forestry research, cooperation with the States and private forest owners, and management of the National Forests and National(More)
A. Objectives : The overall objective of the proposed research is to develop protocols for environmental assessments of alpine lakes in the Sierra Nevada with a range of human impacts. These assessments will be conducted over the range of levels of biological organization (molecular to ecosystem) utilizing currently available assessment techniques and with(More)
Secchi depth has been measured in Lake Tahoe an average of every 12 d since July 1967. Because of the unusual clarity of the lake, Secchi depth measurement is responsive to small changes in light-attenuating particles, and the record exhibits strong variability at the seasonal, interannual, and decadal scales. Using recently developed methods of applied(More)
  • 1