Learn More
Light microscopic studies have demonstrated significant mismatches in the location of neuropeptides and their respective binding sites in the central nervous system. In the present study we used an antiserum raised against a synthetic peptide corresponding to the carboxyl-terminal tail of the substance P (SP) receptor (SPR) to further explore the(More)
Although there is considerable evidence that primary afferent-derived substance P contributes to the transmission of nociceptive messages at the spinal cord level, the population of neurons that expresses the substance P receptor, and thus are likely to respond to substance P, has not been completely characterized. To address this question, we used an(More)
In vivo somatosensory stimuli evoked the release of substance P from primary afferent neurons that terminate in the spinal cord and stimulated endocytosis of substance P receptors in rat spinal cord neurons. The distal dendrites that showed substance P receptor internalization underwent morphological reorganization, changing from a tubular structure to one(More)
We have previously demonstrated that the venom of the scorpion Leiurus quinquestriatus blocks small-conductance Cl- channels, derived from epithelial cells, when applied to the cytoplasmic surface. We have now purified to near homogeneity, and characterized, the component responsible for this blocking activity. It is a small basic peptide of 4,070 Da. The(More)
The self-assembly of the soluble peptide Abeta into Alzheimer's disease amyloid is believed to involve a conformational change. Hence the solution conformation of Abeta is of significant interest. In contrast to studies in other solvents, in water Abeta is collapsed into a compact series of loops, strands, and turns and has no alpha-helical or beta-sheet(More)
To determine the stability of beta-amyloid peptide (Abeta) and the glial and neuronal changes induced by Abeta in the CNS in vivo, we made single injections of fibrillar Abeta (fAbeta), soluble Abeta (sAbeta), or vehicle into the rat striatum. Injected fAbeta is stable in vivo for at least 30 d after injection, whereas sAbeta is primarily cleared within 1(More)
Studies on cultured cells have shown that agonists induce several types of G protein-coupled receptors to undergo internalization. We have investigated this phenomenon in rat striatum, using substance P (SP)-induced internalization of the SP receptor (SPR) as our model system. Within 1 min of a unilateral striatal injection of SP in the anesthetized rat,(More)
Immunocytochemical methods were used to localize tachykinin-like immunoreactivity within neurons of the monkey cerebral cortex. Three primary antibodies were used: polyclonal antisera raised against fragments of substance P and substance K that excluded the carboxyl termini of these peptides, and a monoclonal antibody that recognized the carboxyl terminus(More)
Amyloid plaques composed of the peptide Abeta are an integral part of Alzheimer's disease (AD) pathogenesis. We have modeled the process of amyloid plaque growth by monitoring the deposition of soluble Abeta onto amyloid in AD brain tissue or synthetic amyloid fibrils and show that it is mediated by two distinct kinetic processes. In the first phase,(More)
Quantitative receptor autoradiography using several radiolabeled tachykinins was used to localize and characterize tachykinin peptide receptor binding sites in rat CNS and peripheral tissues. Autoradiographic localization and displacement experiments using several radiolabeled tachykinins indicate that in the rat there are at least 3 distinct tachykinin(More)