Learn More
Although there is considerable evidence that primary afferent-derived substance P contributes to the transmission of nociceptive messages at the spinal cord level, the population of neurons that expresses the substance P receptor, and thus are likely to respond to substance P, has not been completely characterized. To address this question, we used an(More)
Light microscopic studies have demonstrated significant mismatches in the location of neuropeptides and their respective binding sites in the central nervous system. In the present study we used an antiserum raised against a synthetic peptide corresponding to the carboxyl-terminal tail of the substance P (SP) receptor (SPR) to further explore the(More)
In vivo somatosensory stimuli evoked the release of substance P from primary afferent neurons that terminate in the spinal cord and stimulated endocytosis of substance P receptors in rat spinal cord neurons. The distal dendrites that showed substance P receptor internalization underwent morphological reorganization, changing from a tubular structure to one(More)
To determine the stability of beta-amyloid peptide (Abeta) and the glial and neuronal changes induced by Abeta in the CNS in vivo, we made single injections of fibrillar Abeta (fAbeta), soluble Abeta (sAbeta), or vehicle into the rat striatum. Injected fAbeta is stable in vivo for at least 30 d after injection, whereas sAbeta is primarily cleared within 1(More)
Quantitative receptor autoradiography using several radiolabeled tachykinins was used to localize and characterize tachykinin peptide receptor binding sites in rat CNS and peripheral tissues. Autoradiographic localization and displacement experiments using several radiolabeled tachykinins indicate that in the rat there are at least 3 distinct tachykinin(More)
Studies on cultured cells have shown that agonists induce several types of G protein-coupled receptors to undergo internalization. We have investigated this phenomenon in rat striatum, using substance P (SP)-induced internalization of the SP receptor (SPR) as our model system. Within 1 min of a unilateral striatal injection of SP in the anesthetized rat,(More)
Several lines of evidence, including newly discovered genetic mutations, suggest that beta-amyloid (A beta) is directly involved in the neuropathology observed in familial and sporadic forms of Alzheimer's disease (AD). Rather than exerting its neurotoxicity directly, results from our laboratory suggest that fibrillar A beta (fA beta) activates microglia(More)
In vitro studies have demonstrated that glia can express functional receptors for a variety of neurotransmitters. To determine whether similar neurotransmitter receptors are also expressed by glia in vivo, we examined the glial scar in the transected optic nerve of the albino rabbit by quantitative receptor autoradiography. Receptor binding sites for(More)
Substance P (SP) is a putative neurotransmitter in both the peripheral and central nervous systems. In the present report we have used a modification of the Young and Kuhar technique to investigate some of the SP receptors binding properties and the distribution of SP receptors in rat brain. Tritiated SP [( 3H]SP) absorbed extensively to glass but this(More)
Previous studies have demonstrated that neonatal cultures of astrocytes express functional endothelin (ET) receptors. To determine if similar ET receptors are expressed by adult glia we used 125I-ET-1 to examine the expression of ET receptors both in vivo in the normal and transected optic nerves of the rabbit and rat and in vitro in cultures of astrocytes,(More)