Learn More
Short-term synaptic plasticity (STP) can significantly alter the amplitudes of synaptic responses in ways that depend on presynaptic history. Thus, it is widely assumed that STP acts as a filter for specific patterns of presynaptic inputs, and as a result can play key roles in neuronal information processing. To evaluate this assumption and directly(More)
To form accurate representations of the world, sensory systems must accurately encode stimuli in the spike trains of populations of neurons. The nature of such neuronal population codes is beginning to be understood. We characterize the entire sensory system underlying a simple withdrawal reflex in the leech, a bend directed away from the site of a light(More)
Brown ghost knifefish, Apteronotus leptorhynchus, are a species of weakly electric fish that produce a continuous electric organ discharge (EOD) that is used in navigation, prey capture and communication. Stereotyped modulations of EOD frequency and amplitude are common in social situations and are thought to serve as communication signals. Of these(More)
The dynamics of neuronal feedback pathways are generally not well understood. This is due to the complexity arising from the combined dynamics of closed-loop feedback systems and the synaptic plasticity of feedback connections. Here, we investigate the short-term synaptic dynamics underlying the parallel fiber feedback pathway to a primary electrosensory(More)
Weakly electric fish acquire information about their surroundings by detecting and interpreting the spatial and temporal patterns of electric potential across their skin, caused by perturbations in a self-generated, oscillating electric field. Computational and experimental studies have focused on understanding the electric images due to simple, passive(More)
The local bend is a directed behavior produced by the leech, Hirudo medicinalis, in response to a light touch. Contraction of longitudinal muscles near the touched location results in a bend directed away from the stimulus. We quantify the relationship between the location of touch around the body perimeter and the behavioral output by using video analysis,(More)
It is well-known that weakly electric fish can exhibit extreme temporal acuity at the behavioral level, discriminating time intervals in the submicrosecond range. However, relatively little is known about the spatial acuity of the electrosense. Here we use a recently developed model of the electric field generated by Apteronotus leptorhynchus to study(More)
A piecewise linear equation is proposed as a method of analysis of mathematical models of neural networks. A symbolic representation of the dynamics in this equation is given as a directed graph on an N-dimensional hypercube. This provides a formal link with discrete neural networks such as the original Hopfield models. Analytic criteria are given to(More)
OBJECTIVE Several lines of evidence indicate that white matter integrity is compromised in bipolar disorder, but the nature, extent, and biological causes remain elusive. To determine the extent to which white matter deficits in bipolar disorder are familial, the authors investigated white matter integrity in a large sample of bipolar patients, unaffected(More)
Weakly electric fish characterize the environment in which they live by sensing distortions in their self-generated electric field. These distortions result in electric images forming across their skin. In order to better understand electric field generation and image formation in one particular species of electric fish, Apteronotus leptorhynchus, we have(More)