John E. Froehlich

Learn More
Three proteins from the chloroplastic outer envelope membrane and four proteins from the inner envelope membrane have been identified as components of the chloroplastic protein import apparatus. Multiple molecular chaperones and a stromal processing peptidase are also important components of the import machinery. The interactions of these proteins with each(More)
Replication of chloroplasts is essential for achieving and maintaining optimal plastid numbers in plant cells. The plastid division machinery contains components of both endosymbiotic and host cell origin, but little is known about the regulation and molecular mechanisms that govern the division process. The Arabidopsis mutant arc6 is defective in plastid(More)
Chloroplast division in plant cells is orchestrated by a complex macromolecular machine with components positioned on both the inner and outer envelope surfaces. The only plastid division proteins identified to date are of endosymbiotic origin and are localized inside the organelle. Employing positional cloning methods in Arabidopsis in conjunction with a(More)
Glycolysis is a ubiquitous pathway thought to be essential for the production of oil in developing seeds of Arabidopsis thaliana and oil crops. Compartmentation of primary metabolism in developing embryos poses a significant challenge for testing this hypothesis and for the engineering of seed biomass production. It also raises the question whether there is(More)
During plastid division, the dynamin-related protein ACCUMULATION AND REPLICATION OF CHLOROPLASTS5 (ARC5) is recruited from the cytosol to the surface of the outer chloroplast envelope membrane. In Arabidopsis thaliana arc5 mutants, chloroplasts arrest during division site constriction. Analysis of mutants similar to arc5 along with map-based cloning(More)
Chloroplast division is driven by a macromolecular complex containing components that are positioned on the cytosolic surface of the outer envelope, the stromal surface of the inner envelope, and in the intermembrane space. The only constituents of the division apparatus identified thus far are the tubulin-like proteins FtsZ1 and FtsZ2, which colocalize to(More)
Two genes (DGD1 and DGD2) are involved in the synthesis of the chloroplast lipid digalactosyldiacylglycerol (DGDG). The role of DGD2 for galactolipid synthesis was studied by isolating Arabidopsis T-DNA insertional mutant alleles (dgd2-1 and dgd2-2) and generating the double mutant line dgd1 dgd2. Whereas the growth and lipid composition of dgd2 were not(More)
It has previously been found that Tic110, an integral protein of the chloroplast inner envelope membrane, is a component of the chloroplastic protein import apparatus. However, conflicting reports exist concerning the topology of this protein within the inner envelope membrane. In this report, we provide evidence that indicates that the large (>90-kDa)(More)
A chloroplastic outer envelope membrane protein of 75 kDa (OEP75) was identified previously as a component of the protein import machinery. Here we provide additional evidence that OEP75 is a component of protein import, present the isolation of a cDNA clone encoding this protein, briefly describe its developmental expression and tissue specificity, and(More)
With the completion of the sequencing of the Arabidopsis genome and with the significant increase in the amount of other plant genome and expressed sequence tags (ESTs) data, plant proteomics is rapidly becoming a very active field. We have pursued a high-throughput mass spectrometry-based proteomics approach to identify and characterize membrane proteins(More)