Learn More
The diversification of life involved enormous increases in size and complexity. The evolutionary transitions from prokaryotes to unicellular eukaryotes to metazoans were accompanied by major innovations in metabolic design. Here we show that the scalings of metabolic rate, population growth rate, and production efficiency with body size have changed across(More)
Increases in the frequency, severity and duration of temperature extremes are anticipated in the near future. Although recent work suggests that changes in temperature variation will have disproportionately greater effects on species than changes to the mean, much of climate change research in ecology has focused on the impacts of mean temperature change.(More)
The biogeographic expansion of modern humans out of Africa began approximately 50,000 years ago. This expansion resulted in the colonization of most of the land area and habitats throughout the globe and in the replacement of preexisting hominid species. However, such rapid population growth and geographic spread is somewhat unexpected for a large primate(More)
Interference competition occurs when access to resources is negatively affected by the presence of other individuals. Within a species or population, this is known as mutual interference, and it is often modelled with a scaling exponent, m, on the number of predators. Originally, mutual interference was thought to vary along a continuum from prey dependence(More)
Population abundance is negatively related to body size for many types of organisms. Despite the ubiquity of size-density scaling relationships, we lack a general understanding of the underlying mechanisms. Although dynamic models suggest that it is possible to predict the intercept and slope of the scaling relationship from prior observations, this has(More)
The maximum power principle (MPP) states that biological systems organize to increase power whenever the system constraints allow. The MPP has the potential to explain a variety of ecological patterns because biological power (metabolism) is a component of all ecological interactions. I empirically tested the MPP by reanalyzing three two-species competition(More)
Recent work indicates that the interaction between body-size-dependent demographic processes can generate macroecological patterns such as the scaling of population density with body size. In this study, we evaluate this possibility for grazing protists and also test whether demographic parameters in these models are correlated after controlling for body(More)
Optimal migration theory suggests specific scaling relationships between body size and migration speed for individual birds based on the minimization of time, energy, and risk. Here we test if the quantitative predictions originating from this theory can be detected when migration decisions are integrated across individuals. We estimated population-level(More)
A mechanistic understanding of the response of metabolic rate to temperature is essential for understanding thermal ecology and metabolic adaptation. Although the Arrhenius equation has been used to describe the effects of temperature on reaction rates and metabolic traits, it does not adequately describe two aspects of the thermal performance curve (TPC)(More)
Changing temperature can substantially shift ecological communities by altering the strength and stability of trophic interactions. Because many ecological rates are constrained by temperature, new approaches are required to understand how simultaneous changes in multiple rates alter the relative performance of species and their trophic interactions. We(More)