Learn More
When compared to other hominids--great apes including humans--the human pelvis reveals a fundamental reorganization of bony morphology comprised of multiple trait-level changes, many of which are associated with bipedal locomotion. Establishing how patterns of integration--correlations and covariances among traits--within the pelvis have evolved in concert(More)
Long bone loading histories are commonly evaluated using a beam model by calculating cross-sectional second moments of areas (SMAs). Without in vivo strain data, SMA analyses commonly make two explicit or implicit assumptions. First, while it has long been known that axial compression superimposed on bending shifts neutral axes away from cross-sectional(More)
One trait that distinguishes the walking gaits of most primates from those of most mammalian nonprimates is the distribution of weight between the forelimbs and hindlimbs. Nonprimate mammals generally experience higher vertical peak substrate reaction forces on the forelimb than on the hindlimb. Primates, in contrast, generally experience higher vertical(More)
BACKGROUND Traditional parameters used to assess gait asymmetries, e.g., joint range of motion or symmetry indices, fail to provide insight regarding timing and magnitude of movement deviations among lower limb joints during the gait cycle. This study evaluated the efficacy of a new approach for quantifying aspects of gait asymmetry. METHODS Asymmetric(More)
We present a review of novel techniques developed by our research group to improve quantitative assessment of human movement, especially assessments related to symmetric and asymmetric gait patterns. These new methods use motion capture data of the lower limb joints (e.g., joint and body segment angular position and/or velocity, or joint center locations)(More)
We used elliptical Fourier analysis (EFA) to examine potential differences in the complexity and variability of gait of children with (N=10) and without (N=10) Developmental Coordination Disorder (DCD). Children with DCD generated movement patters with larger variability and complexity than typically developing (TD) children. In addition, children with DCD(More)
Broad allometric studies of the musculoskeletal system have frequently sought to explain how locomotor variables have been influenced by body mass. To examine animals that vary widely in body mass, these studies have included taxa that differ in their locomotor adaptations and phylogenetic relatedness. Because these sources of diversity could obscure the(More)
We describe new Fourier- and shape-based methods for quantifying variation in phase-portraits, and re-analyze previously-published ontogenetic and adult data [Clark, J. E., & Phillips, S. J. (1993). A longitudinal study of intralimb coordination in the first year of independent walking: A dynamical systems approach. Child Development, 64, 1143-1157].(More)
The hunting and gathering lifestyle adopted by human ancestors around 2 Ma required a large increase in aerobic activity. High levels of physical activity altered the shape of the human body, enabling access to new food resources (e.g. animal protein) in a changing environment. Recent experimental work provides strong evidence that both acute bouts of(More)
During locomotion, mammalian limb postures are influenced by many factors including the animal's limb length and body mass. Polk (2002) compared the gait of similar-sized cercopithecine monkeys that differed limb proportions and found that longer-limbed monkeys usually adopt more extended joint postures than shorter-limbed monkeys in order to moderate their(More)