John D. Head

Learn More
Epileptogenesis following traumatic brain injury (TBI) is likely due to a combination of increased excitability, disinhibition, and increased excitatory connectivity via aberrant axon sprouting. Targeting these pathways could be beneficial in the prevention and treatment of posttraumatic epilepsy. Here, we tested this possibility using the novel(More)
A general mathematical model for the dynamic behaviour of a single-compartment respiratory system in response to an arbitrary applied inspiratory airway pressure and arbitrary respiratory muscle activity is investigated. The model is used to compute explicit expressions for ventilation and pressure variables of clinical interest for clinician-selected and(More)
Previously we searched for the ab initio global minima of several SixHy clusters by a genetic algorithm in which we used the AM1 semiempirical method to facilitate a rapid energy calculation for the many different cluster geometries explored. However, we found that the AM1 energy ranking significantly differs from the ab initio energy ranking. To better(More)
We have theoretically investigated how the low-energy conformers of the neutral and the zwitterionic forms of glycine as well as methylcarbamic acid are stabilized by the presence water. The MP2/6-311++G(d,p) method was utilized to conduct calculations on glycine and methylcarbamic acid in both isolated clusters and in clusters embedded in the(More)
We investigated theoretically the interaction between methylamine (CH(3)NH(2)) and carbon dioxide (CO(2)) in the presence of water (H(2)O) molecules thus simulating the geometries of various methylamine-carbon dioxide complexes (CH(3)NH(2)/CO(2)) relevant to the chemical processing of icy grains in the interstellar medium (ISM). Two approaches were(More)
We have theoretically investigated the low energy conformers of neutral glycine (NH(2)CH(2)COOH) and its isomer methylcarbamic acid (CH(3)NHCOOH) in the gas phase. A total of 16 different levels of the theory, including CCSD(T), MP2 and B3LYP methods with various Pople and Dunning type basis sets with and without polarization and diffuse functions were(More)
The Al(3)H(9) and Al(3)H(7) potential energy surfaces were explored using quantum chemistry calculations to investigate the H(2) loss mechanism from Al(3)H(9), which provide new insights into hydrogen production from bulk alane, [AlH(3)](x), a possible energy storage material. We present results of B3LYP/6-311++G(d,p) calculations for the various Al(3)H(9)(More)
An improved strategy for finding the ab initio global minimum of SixHy clusters based on a cluster genetic algorithm (CGA) is presented. Four new mutation operators are introduced which better facilitate retention of desirable structural features between the different generations of clusters in the CGA. The new CGA generally finds global minima with fewer(More)
  • 1