John D. Alvarez

Learn More
SATB1 is expressed primarily in thymocytes and can act as a transcriptional repressor. SATB1 binds in vivo to the matrix attachment regions (MARs) of DNA, which are implicated in the loop domain organization of chromatin. The role of MAR-binding proteins in specific cell lineages is unknown. We generated SATB1-null mice to determine how SATB1 functions in(More)
We recently generated and characterized transgenic mice in which regulatory sequences from a myosin light chain gene (MLC1f/3f) are linked to the chloramphenicol acetyltransferase (CAT) gene. Transgene expression in these mice is specific to skeletal muscle and graded along the rostrocaudal axis: adult muscles derived from successively more caudal somites(More)
Although it is well established that the circadian clock regulates mammalian reproductive physiology, the molecular mechanisms by which this regulation occurs are not clear. The authors investigated the reproductive capacity of mice lacking Bmal1 (Arntl, Mop3), one of the central circadian clock genes. They found that both male and female Bmal1 knockout(More)
Circadian rhythms can be regulated by many environmental and endogenous factors. We show here a sensitivity of circadian clock function to oxidative stress that is revealed in flies lacking the foxo gene product. When exposed to oxidative stress, wild-type flies showed attenuated clock gene cycling in peripheral tissues, whereas foxo mutants also lost(More)
The central circadian clock in mammals is housed in the brain and is based on cyclic transcription and translation of clock proteins. How the central clock regulates peripheral organ function is unclear. However, cyclic expression of circadian genes in peripheral tissues is well established, suggesting that these tissues have their own endogenous(More)
The molecular basis for the circadian clock in mammals consists of a number of genes and proteins that form transcription-translation feedback loops. These loops result in a 24-h rhythm in the expression of mRNA and protein levels. Although the anatomical site of the central circadian clock is the SCN of the hypothalamus, all of the circadian clock genes(More)
Transcriptional activation of rearranging Ag receptor gene segments has been hypothesized to regulate their accessibility to V(D)J recombination. We analyzed the role of a functional promoter in the rearrangement of the murine TCR beta-chain locus using two transgenic minilocus constructs. These miniloci each contain an unrearranged V beta 8.3 gene. One has(More)
The mammalian target of rapamycin (mTOR) has proven to be a valid therapeutic target in a number of human cancers, and it is a candidate for clinical trials in human breast cancer. We report on a biomarker-based translational medicine approach to assess the efficacy and mechanism of action for the mTOR inhibitor temsirolimus (CCI-779) in a mammary carcinoma(More)