Learn More
Nitrogen is a key element controlling the species composition, diversity, dynamics, and functioning of many terrestrial, freshwater, and marine ecosystems. Many of the original plant species living in these ecosystems are adapted to, and function optimally in, soils and solutions with low levels of available nitrogen. The growth and dynamics of herbivore(More)
N itrogen emissions to the atmosphere due to human ace tivity remain elevated in industrialized regions of the world and are accelerating in many developing regions (Galloway 1995). Although the deposition of sulfur has been reduced over much of the United States and Europe by aggressive environmental protection policies, current nitrogen deposition(More)
In a decade-long soil warming experiment in a mid-latitude hardwood forest, we documented changes in soil carbon and nitrogen cycling in order to investigate the consequences of these changes for the climate system. Here we show that whereas soil warming accelerates soil organic matter decay and carbon dioxide fluxes to the atmosphere, this response is(More)
PnET is a simple, lumped-parameter, monthlytime-step model of carbon and water balances of forests built on two principal relationships: 1) maximum photosynthetic rate is a function of foliar nitrogen concentration, and 2) stomatal conductance is a function of realized photosynthetic rate. Monthyly leaf area display and carbon and water balances are(More)
Decay processes in an ecosystem can be thought of as a continuum beginning with the input of plant litter and leading to the formation of soil organic matter. As an example of this continuum, we review a 77-month study of the decay of red pine (Pinus resinosa Ait.) needle litter. We tracked the changes in C chemistry and the N pool in red pine (Pinus(More)
The last decade has seen a dramatic shift in the focus of nitrogen cycling research in forest ecosystems. Concerns over nitrogen deficiencies and effects of removal in harvest have given way to concerns over excess nitrogen availability and the potential for forest decline and surface water pollution. Driving this paradigm shift is the increase in(More)
I the mid-1980s two groups met independently, at the tropical Luquillo Experimental Forest in Puerto Rico and at the temperate Harvard Forest in New England, to draft proposals for a competition to qualify for the National Science Foundation’s (NSF) Long Term Ecological Research (LTER) program. Despite the contrasting settings, the groups engaged in(More)
Over the last 4 years, two data sets have emerged which allow increased accuracy and resolution in the definition and validation of a photosynthesis model for whole forest canopies. The first is a greatly expanded set of data on the nitrogen-photosynthesis relationship for temperate and tropical woody species. The second is a unique set of long-term (4(More)
Recent projections of climatic change have focused a great deal of scientific and public attention on patterns of carbon (C) cycling as well as its controls, particularly the factors that determine whether an ecosystem is a net source or sink of atmospheric carbon dioxide (CO2). Net ecosystem production (NEP), a central concept in C-cycling research, has(More)
This article reports responses of two different forest ecosystems to 9 years (1988–96) of chronic nitrogen (N) additions at the Harvard Forest, Petersham, Massachusetts. Ammonium nitrate (NH4NO3) was applied to a pine plantation and a native deciduous broad-leaved (hardwood) forest in six equal monthly doses (May–September) at four rates: control (no(More)