Learn More
The purpose of this study was to determine the mechanism of action of SPI-0211 (lubiprostone), a novel bicyclic fatty acid in development for the treatment of bowel dysfunction. Adult rabbit intestine was shown to contain mRNA for ClC-2 using RT-PCR, Northern blot analysis, and in situ hybridization. T84 cells grown to confluence on permeable supports were(More)
An HEK-293 cell line stably expressing the human recombinant ClC-2 Cl(-) channel was used in patch-clamp studies to study its regulation. The relative permeability P(x)/P(Cl) calculated from reversal potentials was I(-) > Cl(-) = NO(3)(-) = SCN(-)>/=Br(-). The absolute permeability calculated from conductance ratios was Cl(-) = Br(-) = NO(3)(-) >/= SCN(-) >(More)
cDNA encoding a Cl- channel was isolated from a rabbit gastric library, sequenced, and expressed in Xenopus oocytes. The predicted protein (898 amino acids, relative molecular mass 98,433 Da) was overall 93% similar to the rat brain ClC-2 Cl- channel. However, a 151-amino acid stretch toward the COOH-terminus was 74% similar to ClC-2 with six amino acids(More)
A ClC-2G(2 alpha) Cl- channel was identified to be present in human lung and stomach, and a partial cDNA for this Cl- channel was cloned from a human fetal lung library. A full-length expressible human ClC-2G(2 alpha) cDNA was constructed by ligation of mutagenized expressible rabbit ClC-2G(2 alpha) cDNA with the human lung ClC-2G(2 alpha) cDNA, expressed(More)
Melittin is a 26-amino acid amphipathic polypeptide toxin from bee venom which forms anion-selective ion channels in bilayers and biological membranes under the influence of membrane potential. Melittin has been shown to interact with a number of membrane proteins. We found that melittin inhibited K+-stimulated ATP hydrolysis by the (H+ + K+) ATPase in(More)
When gastric microsomes were purified from resting and stimulated rabbit mucosae, they were found to be generally similar in (H+ + K+)-ATPase activity, peptide composition in single-dimension sodium dodecyl sulfate-gel electrophoresis, and in size. In the stimulated vesicles, optimal proton transport activity was found at pH 7.4, 20-50 mM KCl, and 1 mM(More)
Cystic fibrosis transmembrane conductance regulator (CFTR) is present in acidic intracellular vesicles. Human normal and delta F508 CFTR Cl- channel characteristics at pH 7.4 and pH 4.5 were determined by fusing Xenopus laevis oocyte plasma membranes containing the expressed channels to planar lipid bilayers. At pH 7.4, both channels exhibited linear(More)
Recent evidence indicates that Pseudomonas aeruginosa residing as biofilms in airway mucus of cystic fibrosis (CF) patients is undergoing anaerobic metabolism, a form of growth requiring gene products that are not utilized during aerobic growth. The outer membrane protein, OprF, and the rhl quorum sensing circuit are two previously unrecognized cellular(More)
The (Na+ + K+)ATPase is inhibited by the bee venom polypeptide, melittin. KCl and NaCl protect the enzyme from melittin inhibition. Analysis of the K+ and Na+ protection against melittin inhibition suggested a kinetic model which was consistent with slowly reversible melittin binding, and mutually exclusive binding of melittin with K+ and Na+. Accordingly,(More)
We have previously shown that melittin, a bee venom peptide, potently inhibited the catalytic and transport functions of rabbit gastric (H+ + K+)ATPase. A radioactive photoaffinity analog of melittin, ([125I]azidosalicylyl melittin), labeled the (H+ + K+)ATPase. These results suggested that melittin exerted inhibitory effects through direct interaction with(More)